Mexicano en la frontera de la nanotecnología

Sida, aún espera tratamiento eficaz

Galileo, sistema europeo de navegación por satélite

Cáncer, tipos más frecuentes en México
Todos tenemos la palabra, la herramienta tecnológica y el deber ético

Objetivos de Desarrollo del Milenio para América Latina

CIECAS

Todas las voces en torno a los Objetivos de la Cumbre del Milenio

Foro virtual de opinión, discusión y análisis ...

http://www.ciecas.ipn.mx/foroodm

01 (55) 57 29 60 00, ext.: 63115

TE ESPERAMOS

acastaneda@ipn.mx
3 Multiverso

Fronteras

4 Nanotecnología para mejorar vidas
 Huk

6 Protector solar para plantas
 BBRC

8 Sida, mal del siglo, aún espera tratamiento eficaz
 José Luis Carrillo A. y Luis Héctor Perales

10 Combate al cáncer, una empresa de talla mundial
 José Luis Carrillo Agudo

Periodismo Científico para el Tercer Milenio

12 Anécdota de Bohr
 Manuel Calvo Hernando

Cinvestav en su tinta

14 ¿Cómo las bacterias microscópicas pueden causar diarrea?
 Fernando Navarro García

CICINAR: la puerta del IPN al mar

18 ¿De qué se alimentan los aburones?
 David Siqueiros Beltrones
Observatorio Científico

22 Un mexicano en el país de los nanotubos de carbono
Octavio Plaisant Zendejas

DOSSIER cáncer en México
Investigación Hoy

26 ¿Por qué el cáncer?
Horacio Astudillo de la Vega

32 Investigación en cáncer, esperanza para muchos
José Luis Carrillo Aquado

36 Vivir o fumar
Ricardo Urbano Lemus

40 Virus del Papiloma Humano y Cáncer Cervicouterino
Rosalba Narihira

46 Cáncer, el asesino silencioso de la mujer mexicana
Maricela Cruz Martínez

52 Cáncer de próstata, una enfermedad que ataca en la jubilación
Jorge Rubio Galindo

56 Modelado del cáncer mediante la geometría fractal
Jesús Yaljá Montiel Pérez

Otra voz... la visión del joven Investigador

62 Galileo: Sistema Europeo de navegación por satélite
Julio Covarrubias Ruiz y Sergio Vidal B.

66 Salón Internacional de la Electrónica IFA 2006
Sergio Vidal Beltrán y Marco A. Acevedo M.

Sucesos

70 Guerra de Robots en el IPN
Ricardo Urbano Lemus

74 Inauguran biblioteca en honor al nieto académico de Albert Einstein
Octavio Plaisant Zendejas
Multiverso

Cáncer, palabra que en la mayoría de los casos aterra; enfermedad que además de afectar la salud del que la padece, en muchos casos, cambia la vida y la capacidad de convivencia de sus familiares y amigos más cercanos.

La formación de este mal deriva de ciertos cambios registrados en los genes que controlan el crecimiento y muerte normal de las células, cambios que pueden ser de origen hereditario o que pueden ser el resultado de factores ambientales y/o de estilos de vida poco convenientes para las personas.

El cuerpo humano, al igual que la mayoría de los seres vivos, está compuesto por muchas clases de células. En condiciones normales, dichas células crecen y se dividen para producir los ejércitos de células que el cuerpo requiere para mantenerse sano. Algunas veces este proceso ordenado se descontrola, se forman nuevas células cuando el cuerpo no las necesita y las células viejas que deberían morir, permanecen activas. Como consecuencia, el exceso de células va formando la masa de tejido conocida como tumor, el cual es posible detectar por medios clínicos. Debe aclararse que no todos los tumores son sinónimo de cáncer: los tumores benignos no diseminan sus células a otras partes del cuerpo, en la mayoría de los casos pueden ser extraídos, su índice de reparación es mínimo y casi nunca ponen en peligro la vida; por su parte, los tumores malignos poseen células anormales, se dividen en un total descontrol, pueden invadir y destruir el tejido a su alrededor y algunas de ellas pueden desprenderse y entrar al torrente sanguíneo o al sistema linfático, invadiendo otras zonas o órganos del cuerpo.

Sólo en el 2005, los Estados Unidos reportaron casi 1.4 millones de nuevos casos, previendo que más de 550 mil personas morirán por esa enfermedad. Sin embargo, los avances en la detección, diagnóstico y tratamiento del flagelo han incrementado la tasa de supervivencia para muchos tipos de cáncer. Se espera que cerca de un 64 por ciento de las personas con diagnóstico positivo sobrevivan hasta 5 años. Es por estas noticias alentadoras que deben tomarse en serio los estudios clínicos como una opción para todos aquellos interesados en la prevención, detección, diagnóstico y tratamiento de esta enfermedad. La gente puede reducir el riesgo de contraer cáncer adoptando un estilo de vida saludable, realizándose exámenes específicos orientados a detectar afeciones precancerosas o cáncer en estado inicial.

Vale la pena atender todas las recomendaciones para prevenir o detectar a tiempo esta enfermedad, y muchas otras, ya que, además de que los tratamientos son agotadores y agresivos, también son muy costosos. Pero, por si esto no fuera suficiente, es necesario considerar que lo devastador del efecto no solo golpea al enfermo, la onda de choque que genera sacude la salud física, mental y espiritual de quienes están cerca de ellos, convierte en urgentes actividades lejanas que antes no eran tomadas en cuenta y obliga a que costumbres y acciones cotidianas vayan quedando en el olvido. Toda enfermedad grave de un familiar cercano, y con mayor razón cuando ésta reduce la esperanza de vida del paciente, genera cambios importantes en los estilos de vida de sus seres queridos. Debemos hacerlo por nosotros, pero también por la salud de quienes nos rodean.
La empresa británica Oxonica ha empleado algunas investigaciones de la universidad de Oxford sobre nanotecnología para crear una próspera compañía que vende productos innovadores alrededor del mundo. Impulsados por un compromiso para mejorar la calidad de vida, sus dos primeros productos están siendo usados para luchar contra el cáncer y la degradación ambiental.

PRODUCTOS MICRO, AVANCES GIGANTES

"Nuestra tecnología fundamental es la física y nuestra especialidad es entender como manipular y controlar la energía en materiales inorgánicos en la micro-escala", dice el presidente de Oxonica, doctor Kevin Matthews. "Tomamos la decisión de responder a las necesidades de los consumidores con nuestra tecnología para desarrollar productos que dan resultados tangibles y significativos".

Oxonica, comenzó lanzando dos productos revolucionarios, OptisolTM, un sistema innovador de protección fotostable de rayos ultravioleta (UV) y EnviroxTM, un aditivo avanzado de diesel que permite el uso más eficiente y limpio del combustible.

Aunque la empresa desarrolla soluciones para los sectores de polímeros, revestimiento, seguridad e identificación personalizada, su prioridad es el desarrollo de un sistema de marcadores para el diagnóstico de enfermedades. Compuesto de polímeros diminutos que se activan ópticamente y pueden etiquetar biomoléculas, este sistema tiene el potencial de hacer diagnósticos clínicos así como sondes de alto rendimiento y decodificar el ADN. "Nuestra tecnología permite pruebas simultáneas para una variedad de análisis", explica el doctor Matthews. "Esto mantiene bajos los costos, acelera el diagnóstico y podría ser usado para optimizar el tratamiento farmacéutico".

DOS INVENTOS

Uno de esos nuevos productos, OptisolTM absorbe de rayos UV, basado en óxido de titanio ultrafino, optimiza el funcionamiento de los protectores solares y de las cremas contra el envejecimiento, se ha incorporado a los productos Soltan de la cadena inglesa Boots. Optisol provee amplia protección por más de ocho horas, prácticamente eliminando la formación de radicales libres inducidos por los rayos UV, una causa del envejecimiento de la piel. Además expulsa efectivamente los radicales libres.

Por su lado, EnviroxTM, es un nanocatalista, aditivo avanzado de combustible para diesel producido a partir del óxido de cerio que reduce el consumo y la cantidad de gases de escape. Adoptada ya por Stagecoach, un líder global en transportes que opera en el Reino Unido y Nueva Zelanda, Envirox puede ser utilizado sin modificaciones a los motores y no tiene ningún impacto sobre el funcionamiento de los lubricantes.

Los avances y ambiciones de Oxonica superan por mucho su tamaño: tienen apenas 37 empleados, más de la mitad científicos. "Podemos lograr cosas más allá de nuestro tamaño, gracias a las alianzas que hemos construido alrededor del mundo lo cual nos permite avanzar más rápidamente", concluye el doctor Matthews.

Para más información:
Sonia Bouzid, Oxonica.
Tel.: + 44 0 1865 856 700
D. e.: <info@oxonica.com>.
70 Aniversario
INSTITUTO POLITÉCNICO NACIONAL
1936 • 2006

Innovación y calidad en la formación
Hacia una nueva gestión institucional
Responsabilidad y relación con el entorno
Atención a la comunidad
Conocimiento para el desarrollo del país

Instituto Politécnico Nacional
Protagonista en la Historia de México

La presente administración ha edificado instalaciones de vanguardia, como la Unidad Politécnica para el Desarrollo de la Competitividad Empresarial, y el Centro de Formación e Innovación Educativa, ubicados en la Unidad Profesional "Adolfo López Mateos", Zacatenco

www.ipn.mx
PROTECTOR SOLAR PARA PLANTAS
Científicos de la Universidad de Sheffield que estudian los procesos biológicos fundamentales de las plantas, han hecho un descubrimiento que podría mejorar sustancialmente la vida de los campesinos alrededor del mundo. Utilizando ciertas especies de plantas, como la pequeña hierba Arabidopsis, han descubierto los procesos utilizados por las plantas para protegerse contra condiciones potencialmente letales del medio ambiente.

Estos descubrimientos están siendo ahora aplicados para mejorar la productividad de agricultores de frijol en América Latina y campesinos de arroz en Asia.

LAS DESVENTAJAS DEL SOL
Niveles muy altos de radiación solar pueden ser adversos para las plantas al exceder su capacidad para la fotosíntesis. Este efecto se potencia cuando hay escasez de agua o temperaturas extremas. El daño que causa la radiación a sus delicadas membranas fotosintéticas trunca su crecimiento, genera destrucción celular y, eventualmente, las lleva a la muerte.

Científicos patrocinados por el Consejo de Investigación de Biotecnología y Ciencias Biológicas (sus siglas en inglés) han descubierto que ciertas plantas son capaces de convertir en calor, parte de la luz excesiva absorbida, mediante la alteración de la estructura de una de las proteínas en esas membranas.

Este proceso denominado fotoprotector, es una sorprendente y diminuta válvula de escape que evita el perjuicio de la planta, disipando el exceso letal de radiación. Dicho proceso es apoyado por una molécula especial carotenida llamada zeaxantina; las plantas con mayores niveles de esta molécula resultan estar más protegidas.

El profesor Peter Horton, jefe de la investigación de la Universidad de Sheffield dijo: “las plantas usan una variedad de procesos para adaptarse a las difíciles y potencialmente nocivas condiciones medioambientales. Estamos tratando de comprender los mecanismos que utilizan las plantas a nivel molecular para prevenir daños por un exceso de luz solar. Esperamos que estos conocimientos puedan ser usados para mejorar la capacidad de fotosíntesis y, por lo tanto, la productividad de los cultivos más comunes que alimentan a millones en todas partes del mundo”.

“Para aplicar estas investigaciones en mejorar la productividad de cultivos, necesitamos entender cómo estos procesos se relacionan con el crecimiento de las plantas y el desarrollo de las condiciones de la tierra donde se cultivan, ya que algunos procesos que pueden parecer importantes en el laboratorio pueden resultar no serlo en las variadas condiciones de campo”, agregó.

IMPULSO A UNA AGRICULTURA SUSTENTABLE
Algunos investigadores han estado trabajando con instituciones agrícolas en América Latina y Asia para comenzar a mostrar cómo su conocimiento de los mecanismos de defensa de las plantas tales como la Arabidopsis, pueden ser utilizados para mejorar las tasas de fotosíntesis de cultivos como el arroz o el frijol.

La profesora Julia Goodfellow, presidenta de BBSRC, comentó “ Esto demuestra cómo la investigación de los procesos biológicos fundamentales tiene el potencial de tener un gran impacto en la vida de la gente alrededor del mundo. Muchos proyectos de investigación apoyados por la BBSRC proporcionan información fundamental que puede llevar a mejorar los cultivos, tanto en el Reino Unido — donde ya se hacen sentir los efectos del cambio climático — como en el extranjero, donde puede ayudar a la agricultura sustentable y a mejorar la seguridad alimenticia”.

Para más información:
Professor Peter Horton, University of Sheffield
D. e.: <p.horton@sheffield.ac.uk>.
Si un paciente presenta fiebre, pérdida de peso inexplicada, diarrea, fatiga, vómitos, tos seca, sudores nocturnos, astenia (estado de fatiga y agotamiento sin causa orgánica), palidez, deshidratación y anorexia, cabe la posibilidad de que el diagnóstico correcto de su padecimiento sea el Síndrome de Inmunodeficiencia Adquirida (Sida, como se le denomina generalmente). El doctor Luis Héctor Roberto Perales Acosta, médico cirujano adscrito al Centro de Difusión de Ciencia y Tecnología (CeDiCyT) unidad Tezozómoc, del Instituto Politécnico Nacional (IPN), declaró a Conversus que la causa de este mal es la infección por el Virus de Inmunodeficiencia Adquirida (VIH), que se transmite de pacientes infectados ya sea por contacto sexual, transfusión de sangre contaminada, por vía materna o por instrumentos contaminados.

José Luis Carrillo Aguado*
Luis Héctor Roberto Perales Acosta**

*Periodista científico de Conversus
**Médico cirujano adscrito al CeDiCyT unidad Tezozómoc
Las manifestaciones clínicas primarias de este mal dependen de alteraciones de linfocitos y macrófagos del sistema nervioso central y es responsable de trastornos neurológicos. Las manifestaciones secundarias son consecuencia de la inmunodeficiencia, que permite la aparición de infecciones oportunistas y varios tipos de cáncer. La infección oportuna es producida por algunos agentes infecciosos, habitantes normal del organismo, o es una infección previa controlada, pero no eliminada por el sistema inmunológico, que ya no está indemne. Las infecciones oportunistas varían según el agente y el (los) órgano(s) afectado(s), como pulmones, aparato digestivo, sistema nervioso central y piel.

La reiteración de enfermedades tiende a hacerlas cada vez más graves y poner en peligro la vida del paciente. Es común la fiebre, el debilitamiento general y varios órganos pueden verse afectados al mismo tiempo debido a la diseminación del virus.

La mayor parte de las afecciones se trata con medicamentos que los controlan momentáneamente. Sin embargo, advierte el doctor Perales Acosta, persiste el déficit inmunológico subyacente, se reactivan las mismas infecciones o aparecen otras nuevas, hasta que los tratamientos se vuelven ineficaces y los pacientes mueren. En la vida del paciente se pueden presentar otras complicaciones, entre ellas la tuberculosis, el linfoma de Kaposi, infecciones por gérmenes oportunistas como Pneumocystis carinii, Candida albicans y otros.

PREVENCIÓN

Para prevenir la transmisión del sida se recomienda la monogamia con persona sana, el uso del condón cuando se tienen relaciones sexuales, no compartir agujas, notificar las infecciones cuando se presenten y evitar la toxicomanía.

BREVE HISTORIA

La primera epidemia de Sida considerada como tal surgió en la década de los ochenta, hay diversas teorías sobre su origen. En 1981 se dio el primer caso de neumonía por Pneumocystis carinii, en homosexuales. Pronto se hizo evidente que se trataba de una epidemia. Se pensó que el origen podía ser drogas usadas por la comunidad gay, combinación simultánea de varias enfermedades de transmisión sexual, viajes a destinos exóticos u otros. Sin embargo, se presentaron nuevos casos en haitianos, no homosexuales, drogadictos y hemofílicos. En 1983 se detectó el primer caso de transmisión heterosexual.

En 1983 el doctor Rozenbaum extirpa un ganglio del cuello de un paciente con sida. El doctor Luc Montagnier examina el ganglio y determina restos de actividad bioquímica de retrovirus. Esta es la primera evidencia de que la enfermedad es causada por retrovirus.

Antes, el doctor Robert Gallo había descrito los retrovirus responsables de leucemias. En febrero de 1983, Charles Dauge, del Instituto Pasteur, fotografió al virus del ganglio mediante un microscopio electrónico, denominándolo Bru en honor al paciente infectado.

En mayo de 1983, Science publica el descubrimiento de Montagnier y se propone la denominación de virus LAV.

En abril de 1984, Margaret Heckler anuncia el descubrimiento del doctor Gallo del HTLV-III, como causante del sida. En un alarde de optimismo, se declara que en dos años se obtendrá la vacuna.

Para finales de 1984, Robin Weis demuestra que el HTLV-III y LAV son el mismo virus. ¿Es un descubrimiento francés o americano? En 1986, Montagnier y Gallo publican secuencias genéticas de los virus del sida identificadas y comparten derechos y patentes.

En 1986, los virologos deciden ponerle el nombre de Virus de Inmunodeficiencia Humana. Se denomina Sida a la enfermedad cuando ya han aparecido los síntomas relacionados con inmunodeficiencia, y se habla de infección VIH cuando hay anticuerpos pero aún no hay síntomas.

El primer análisis de material genético del VIH presenta gran similitud con virus de la inmunodeficiencia del simio (SIV), el cual afecta a monos del centro de África, donde aparecieron casos de sida desde el principio de la epidemia. La comunidad científica ha aceptado que el VIH es descendiente del SIV. Parece ser que el origen se debió a la caza de monos para su consumo por los aborígenes africanos. Lo que sucede es que al matar y preparar un mono para cocinarlo, se propicia la contaminación con su sangre infectada.

TRATAMIENTO

Para el tratamiento del Sida se requieren sustancias capaces de actuar contra el VIH. En la actualidad, se investiga un compuesto que sea capaz de destruirlo y eliminarlo del organismo. Mientras tanto, se ensaya con medicamentos que permiten detener la enfermedad o retardar su progreso.

Surge la necesidad de que los equipos destinados al tratamiento de enfermos de sida sean multidisciplinarios: médicos, enfermeras, psicólogos y asistentes sociales son igualmente importantes cuando se trata de sostener al paciente, así como el apoyo y la comprensión de familiares y amigos.

Es imperativo que en el presente se encuentre la cura a esta pandemia del siglo XX, lo cual no se considera un desafío insuperable. Se requiere del trabajo, la imaginación y la creatividad de los investigadores en farmacología. En el proceso también se demanda la formación de estudiantes jóvenes con vocación para superar los retos impuestos, gente que aplique su talento en beneficio de la humanidad. Todos los seres vivos los necesitamos.
Combate al cáncer, una empresa de talla mundial

José Luis Carrillo Aguado

Con más de 10 millones de casos nuevos reportados anualmente, el cáncer se ha convertido en una de las enfermedades más devastadoras en todo el mundo. Las causas de los nuevos tipos de cáncer varían según las diferentes regiones geográficas, pero en la mayoría de las naciones difícilmente hay una familia sin una víctima de cáncer, según el Reporte Mundial de Cáncer publicado por la Organización Mundial de la Salud (OMS) en 2003.

Según la OMS, la carga de la enfermedad es inmensa, no sólo para los individuos afectados, sino también para sus familiares y amigos. El cáncer representa un reto de salud pública en naciones ricas y pobres por igual. Sin embargo, cáncer no es sinónimo de muerte, pues en todo el mundo se realizan investigaciones científicas al respecto, amén de que la prevención, en muchos casos, puede resultar la diferencia entre la vida y la muerte. Ha afectado al hombre en todas las épocas, en todos los países y en todas las edades, pero actualmente se intenta mejorar el diagnóstico, prever los factores de riesgo que permiten su desarrollo y poder atacarlos, así como ofrecer opciones de tratamiento.

Periodista científico de Conversus
¿Qué es el cáncer y cuáles son sus principios moleculares? El doctor Patricio Gariglio Vidal, investigador del Centro de Investigaciones y de Estudios Avanzados (Cinvestav) del IPN, ha definido a este padecimiento como una enfermedad caracterizada fundamentalmente por la proliferación celular descontrolada, donde las células cancerosas forman tumores malignos que invaden tejidos vecinos y pueden colonizar tejidos relativamente lejanos, mediante el proceso que lleva a la destrucción de órganos vitales a distancia (metástasis).

El descubrimiento de los protooncogenes (genes normales) y de los oncogenes (versiones alteradas), ha permitido la explicación del cáncer a nivel molecular. Los protooncogenes desempeñan funciones vitales para el crecimiento celular, como la reproducción y la respiración. Los oncogenes representan formas mutadas de genes celulares y ofrecen una indicación clara de los blancos genéticos que se alteran por agentes cancerígenos.

Los antioncogenes son supresores de tumores, que regulan negativamente el crecimiento celular, es decir, frenan la proliferación de las células en los tejidos naturales, lo cual sugiere que a la célula neoplásica le falta un gen regulador del crecimiento (un antioncogen), pero es posible recuperar dicho control negativo al fusionarla con una célula normal. El antioncogen más estudiado es el gen p53, que codifica para la proteína p53, la cual participa en la respuesta celular cuando ocurre una lesión en el ADN de dos formas diferentes: a) detiene el ciclo celular, permitiendo así que se repare el ADN y se eliminen mutaciones antes de la división celular; y b) causa apoptosis (muerte celular programada) cuando el daño genético ha sido muy importante y ya no se puede reparar. Al gen p53 se le ha bautizado como guardián del genoma, y además de éste hay otros genes supresores de tumores, que están siendo estudiados en diferentes laboratorios del mundo.

El diagnóstico molecular de las alteraciones genéticas en oncogenes y antioncogenes es de gran importancia clínica y permite lograr un pronóstico acertado, además del diseño de nuevos métodos terapéuticos en cáncer humano, afirmó el experto biólogo molecular del Cinvestav. Los métodos de diagnóstico para detectar la presencia de un tumor maligno de manera previa a la aparición de los síntomas pueden salvar muchas vidas. Los tumores detectados oportunamente son más fáciles de atender y resulta más sencillo detener su malignidad, antes de que causen daños irreversibles.

Síntomas de las disfunciones del ADN contra el cáncer
En la página news@nature.com, la periodista científica Lucy Heady explica cómo un grupo de investigación de la Universidad de California en San Francisco, ha logrado un cambio sustancial en el entendimiento de las defensas naturales del organismo contra el cáncer, revelando un truco singular: cuando se logra apagar al gen p53 durante la quimioterapia, puede activar un auxilio para reducir los efectos secundarios, tales como la pérdida de cabello.

Los dos efectos del gen p53, reparar heridas dañadas de ADN, y matar células que contengan ADN defectuoso, ayudan a combatir el cáncer, pero este último puede conllevar efectos negativos.

Cuando las células sufren daño masivo del ADN, después de una exposición a la radiación, el gen p53 entra en una fase de acción entusiasta. Sólo alrededor de una en mil millones de células dañadas contendrán una mutación. “Es como probar el advenimiento de un dictador potencial en una nación matando a la totalidad de la población”, asegura el doctor Gerard Evan, investigador de la Universidad de California en San Francisco, quien condujo la investigación. Esta destrucción indiscriminada causa la pérdida de pelo y las náuseas extrema experimentadas por los pacientes tratados con radio y quimioterapia.

El grupo de Evan desarrolló un método pionero para destrabar la función del gen p53, en el cual el gen no es suprimido, como en experimentos tradicionales, sino que es mutado de tal forma que puede ser encendido o apagado en cualquier fase al injertar químicos simples a los ratones de laboratorio.

Tres conjuntos de estos ratones con un gen fáctible de encenderse o apagarse, fueron tratados con radiación intensa similar a aquella experimentada por pacientes de radioterapia, lo que causa daño extensivo al ADN, así como un tipo de cáncer conocido como linfoma.

Los ratones con el gen p53 encendido durante la radiación, pero que fue apagado inmediatamente después, fueron los roedores que sufrieron mayor daño masivo a sus tejidos, ya que el gen p53 respondió a la invasión al ADN matando a sus células; sin embargo, no se impidió la formación de tumores, y los ratones murieron de cáncer; lo mismo sucedió con los ratones que tuvieron el gen p53 apagado durante todo el procedimiento. Los ratones en ambos grupos vivieron un máximo de 300 días.

Los ratones que permanecieron con el gen p53 apagado durante la radiación, pero que 8 días después de la radiación se les encendió, fueron los menos lastimados, ya que no presentaron daño detectable en sus tejidos, y además presentaron un número extremadamente reducido de linfomas. Estos roedores vivieron un promedio de 99 días más que los demás ratones. Los ratones con el gen p53 encendido durante todo el procedimiento, como es el caso de los pacientes humanos, sufrieron daño al tejido, pero evitaron linfomas mayores.

A pesar de que es imposible mantener un control perfecto sobre el encendido y apagado de los genes, advierte Evans, los datos reportados en Nature son claros: Los resultados implican que las dos acciones del gen p53 deben ser estimulados mediante mecanismos independientes. La importancia de estos resultados para quienes sufren cáncer es vital: suprimir los efectos del gen p53 temporalmente durante la quimioterapia y la radioterapia, permitirá disminuir los desagradables efectos secundarios, mientras que se continuará brindando protección al organismo en contra de la formación de tumores.

Aún hay muchas dudas en la forma en que se debe tratar a los humanos. Por ejemplo, las proteínas conocidas que desempeñan un papel en el proceso de formación de cáncer pueden comportarse de manera diferente en ratones y humanos. El grupo de Evan está trabajando arduamente en utilizar su método en ratones con diferentes clases de cáncer. La batalla acaba de empezar; necesitamos investigadores en medicina urgentemente.
Anécdota de BOHR

Manuel Calvo Hernando

*Periodista y divulgador científico. Presidente de Honor de la Asociación Española de Periodismo Científico. D.e.; manueelcalvo@aepe.c.telefonica.net
Sir Ernest Rutherford, presidente de la Sociedad Real Británica y Premio Nobel de Química en 1908, contaba la siguiente anécdota:

"Hace algún tiempo, recibí la llamada de un colega. Estaba a punto de poner un cero a un estudiante por la respuesta que había dado en un problema de física, pero a que éste afirmaba rotundamente que su respuesta era absolutamente acertada. Profesores y estudiantes acordaron pedir arbitraje de alguien imparcial y fui elegido yo. Leí la pregunta del examen: 'Demuestre cómo es posible determinar la altura de un edificio con la ayuda de un barómetro'.

El estudiante había respondido: 'lleve el barómetro a la azotea del edificio y atéle una cuerda muy larga. Descuelgue hasta la base del edificio, marque y midala. La longitud de la cuerda es igual a la longitud del edificio'.

Realmente, el estudiante había planteado un serio problema con la resolución del ejercicio, porque había respondido a la pregunta correcta y completamente. Por otro lado, si se le concedía la máxima puntuación, podría alterar el promedio de su año de estudios, obtener una nota más alta y así certificar su alto nivel en física; pero la respuesta no confirmaba que el estudiante tuviera ese nivel. Sugerí que se le diere al alumno otra oportunidad. Le concedí seis minutos para que me respondiera la misma pregunta pero esta vez con la advertencia de que en la respuesta debía demostrar sus conocimientos de física.

Habían pasado cinco minutos y el estudiante no había escrito nada. Le pregunté si deseaba marcharse, pero me contestó que tenía muchas respuestas al problema. Su dificultad era elegir la mejor de todas. Me excusé por interrumpirle y le rogué que continuara. En el minuto que le quedaba escribió la siguiente respuesta: coja el barómetro y láncelo al suelo desde la azotea del edificio, calcule el tiempo de caída con un cronómetro. Después aplique la fórmula altura = 0,5 A por t^2. Y así obtenemos la altura del edificio. En este punto le pregunté a mi colega si el estudiante se podía retirar. Le dió la nota más alta.

Tras abandonar el despacho, me reencuentré con el estudiante y le pedí que me contara sus otras respuestas a la pregunta. Bueno, respondió, hay muchas maneras, por ejemplo, coges el barómetro en un día soleado, mides su altura y la longitud de su sombra. Si medimos a continuación la longitud de la sombra del edificio y aplicamos una simple proporción, obtendremos también la altura del edificio.

Perfecto, le dije, ¿y de otra manera? Sí, contestó, éste es un procedimiento muy básico: para medir un edificio, pero también sirve. En este método, coge el barómetro y se sitúa en las escaleras del edificio en la planta baja. Según subes las escaleras, va marcando la altura del barómetro y cuenta el número de marcas hasta la azotea. Multiplica al final la altura del barómetro por el número de marcas que ha hecho y ya tienes la altura.

Este es un método muy directo. Por supuesto, si lo que quiere es un procedimiento más sofisticado, puede atar el barómetro a una cuerda y moverlo como si fuera un péndulo. Si calcularas que cuando el barómetro está a la altura de la azotea la gravedad es cero y si tenemos en cuenta la medida de la aceleración de la gravedad al descender el barómetro en trayectoria circular al pasar por la perpendicular del edificio, de la diferencia de estos valores, y aplicando una sencilla fórmula trignométrica, podríamos calcular, sin duda, la altura del edificio. En este mismo estilo de sistema, ata el barómetro a una cuerda y lo descuele desde la azotea a la calle. Usándolo como un péndulo puede calcular la altura midiendo su periodo con precisión. En fin, concluí, existen otras muchas maneras. Probablemente, la mejor sea coger el barómetro y golpear con él la puerta de la casa del conserje. Cuando abra, decile:

—Señor conserje, aquí tengo un bonito barómetro. Si usted me dice la altura de este edificio, sé lo regalo. En este momento de la conversación, le pregunté si no conocía la respuesta convencional al problema (la diferencia de presión marcada por un barómetro en dos lugares diferentes nos proporciona la diferencia de altura entre ambos lugares) dijo que la conocía, pero que durante sus estudios, sus profesores habían intentado enseñarle a pensar."

El estudiante se llamaba Niels Bohr, físico danés, premio Nóbel de Física en 1922, más conocido por ser el primero en proponer el modelo de átomo con protones y neutrones y los electrones que lo rodeaban. Fue fundamentalmente un innovador de la teoría cuántica.
¿Cómo las bacterias microscópicas pueden causar diarrea?

Fernando Navarro García*

Las principales causas de muerte en niños de países en vías de desarrollo son las enfermedades infecciosas, especialmente las diarreicas y neumonías. Estas infecciones también afectan a los adultos, quienes son incapazados por periodos variables de tiempo, con repercusiones sobre la economía. En México, la incidencia de las diarreas ha tenido un incremento de tres veces (Informe presidencial, 2002). Esta información refleja parcialmente el problema ya que muchos adultos no acuden a los servicios de salud por una diarrea. Es más, en países en vías de desarrollo no se les da importancia a las diarreas en niños, porque se considera un padecimiento menor y común, sin embargo no se toma en cuenta el impacto que pueden tener las diarreas sobre la desnutrición o mal absorción durante la infancia, que obviamente repercute en el desarrollo corporal e intelectual de los niños.

Desde el punto de vista científico, estos aspectos deben ser abordados con bases sólidas para determinar la etiología e incidencia real. Así por ejemplo, la alta incidencia de las infecciones gastrointestinales está relacionada con la superficie intestinal, que en el humano es de aproximadamente 340 m², lo cual lo convierte en un blanco importante para los patógenos. El conocimiento de las enfermedades intestinales depende de la investigación en dos áreas principales: 1) Los mecanismos patogénicos de los agentes infecciosos, tales como la identificación y caracterización de los factores moleculares que alteran estructural y metabólicamente a las células intestinal, y 2) La inmunidad de mucosas, barreras epiteliales que constituyen la más importante defensa contra patógenos adherentes.

La diarrea caracterizada por la presencia de heces acuosas, poco compactas y frecuentes se considera una condición crónica (continua o prolongada) cuando este tipo de heces se presenta durante más de cuatro semanas. La diarrea en adultos generalmente es leve y se resuelve rápidamente sin complicaciones, mientras que en bebés y niños (especialmente menores de tres años), la diarrea es más preocupante debido a que se pueden deshidratar muy rápidamente, lo cual significa que el cuerpo pierde suficiente fluido para funcionar adecuadamente. La diarrea puede ser causada por un problema temporal, como una infección, o un problema crónico, como una enfermedad intestinal. Entre las causas más comunes de diarrea están: a) Las infecciones bacterianas, que incluyen Campylobacter, Salmonella, Shigella, y Escherichia coli; b) Infecciones virales, causadas por rotavirus, virus de Norwalk, citomegalovirus, virus del herpes simple y hepatitis viral; c) Intolerancia a los alimentos, por ejemplo intolerancia a la lactosa, un azúcar encontrado en la leche; d) Parásitos, tales como Giardia lamblia, Entamoeba histolytica, y Cryptosporidium; e) Reacción a medicinas, como antibióticos, medicamentos para la presión sanguínea y antiácidos que contienen magnesio; f) Enfermedades intestinales, como la enfermedad inflamatoria del intestino o enfermedad celiaca; g) Desordenes funcionales del in-

*Doctor en ciencias, investigador del Departamento de Biología Celular Centro de Investigación y de Estudios Avanzados (Cinvestav).
testino, tales como síndrome de la irritabilidad intestinal, en el cual los intestinos no trabajan normalmente.

Aun cuando entre las bacterias que causan diarrea se encuentra Escherichia coli, en los países en vías de desarrollo no se estudia intensamente los mecanismos de patogenicidad de esta bacteria, principalmente porque existe confusion con las bacterias comensales que también son E. coli. Sin embargo, a mediados de la década de los cuarentas del siglo pasado (1940) se suscitaron en Inglaterra brotes de diarrea en niños de guarderías que fueron asociados específicamente a ciertos serotipos somatocolfagelares (O:H) de E. coli. Estas bacterias fueron llamadas E. coli enteropatogénas (EPEC, por sus siglas en inglés) con la finalidad de diferenciar a este tipo virulento, de las bacterias de flora normal. A partir de ahí, se han reportado casos de diarrea infantil asociados a EPEC en todo el mundo, principalmente en países en vías de desarrollo. Para entender la dimensión del problema, en un estudio conducido en Bangladesh, en 814 pacientes (menores de 5 años de edad), quienes habían tenido una enfermedad gastrointestinal, EPEC fue encontrada como una de las principales agentes etiológicos, aun por arriba de los patógenos clásicos, tales como Shigella, Aeromonas, y Vibrio cholerae. En Latinoamérica, incluyendo México, EPEC es reconocida como el principal patógeno involucrado en diarrea en niños, la cual es además más prevalente que Campylobacter y Rotavirus.

Infecciones debidas a E. coli patogénica pueden estar limitadas a la superficie de la mucosa o bien pueden diseminarse a través del cuerpo. Tres síndromes clínicos generales resultan de la infección con E. coli patogénica: a) Infecciones del tracto urinario, b) Sepsis/meningitis y c) Enfermedades diarreicas/entéricas. En nuestro laboratorio nos enfocamos a este último síndrome, el
El virus de Norwalk (izquierda y centro) y un calcivirus no especificado (derecha), la barra equivale a 100 nm.

relacionado con *E. coli* diarrégena; en la actualidad se han definido seis categorías: *E. coli* enterotoxigénica (ETEC), enteropatogénica (EPEC), enterohemorrágica (EHEC), enteroinvasiva (EIEC), adherente difusa (DAEC) y enteroagregativa (EAEC).

La virulencia de estas cepas de *E. coli* diarrégenas es conferida por genes codificados en plásmidos o islas de patogenicidad en el cromosoma. Anteriormente, se pensaba que los genes de virulencia bacteriana se adquirían por procesos evolutivos convergentes y divergentes; sin embargo las ventajas de la genética molecular nos han mostrado un tercer proceso principal, la transferencia genética horizontal (es decir, no se hereda, se recibe por transferencia). Los genes de virulencia son transferidos entre bacterias vía transformación, transferencia de fagos o transmisión de plásmidos, haciendo casi inevitable que una solución adaptativa a un obstáculo impuesto por el hospedero sea compartida con otros procariontes. Genes que codifican toxinas que ribosilan ADP, fimbrias de adherencia, vías de secreción de proteínas y cápsulas bacterianas, por ejemplo, se han encontrado distribuidas a través de géneros, tribus y familias.

Nuestro Laboratorio de Microbiología Celular e Inmunidad de Mucosas en el Departamento de Biología Celular del Cinesav se ha enfocado principalmente en dos patótipos: EAEC y EPEC. Así por ejemplo en el caso de EAEC hemos contribuido a: 1) La identificación de la fimbria que induce el fenotipo agregativo en EAEC y su relación en los fenómenos de adhesión a las células epiteliales del intestino; 2) La identificación de una toxina que podría ser una de las causas de la diarrea producida por EAEC; 3) Definir que la toxina, que hemos llamado Pet (del inglés plasmid-encoded protein), tiene actividad enterotóxica y citotóxica; 4) La clonación y secuenciación el gen que codifica esta toxina.

Asimismo, hemos caracterizado un nuevo sistema de secreción de proteínas bacterianas que conforman una nueva familia, miembros de esta familia de proteínas han sido implicados como importantes factores de virulencia en muchos patógenos Gram-negativos. También hemos caracterizado a nivel celular y molecular la interacción de toxinas bacterianas con células epiteliales del intestino, así como estudiado la respuesta inmune intestinal contra estas bacterias.

Finalmente, convendría recalcar que en los países en vías de desarrollo estamos obligados a buscar alternativas para el control de las enfermedades infecciosas, como la vacunación. La vacunación es uno de los medios más eficaces y baratos para prevenir las enfermedades infecciosas. Sin embargo, el desarrollo de nuevas vacunas que ayuden a prevenir las enfermedades de más incidencia en países en vías de desarrollo está prácticamente paralizado porque el mercado de fármacos nuevos es mucho más lucrativo que el de vacunas.
El abulón, importante recurso pesquero en la península de Baja California

¿De qué se alimentan los abulones?

En el noroeste de México es bien conocida la caída que sufrió la pesquería del abulón, hasta en un orden de magnitud, hace más de 30 años; de unas 2000-3000 toneladas antes de 1976, a 300-500 toneladas después. Desafortunadamente, durante la época de bonanza, no se desarrolló investigación científica relacionada con la ecología de dicho recurso, a excepción de los aportes de Guzmán del Próo y colaboradores alrededor de 1970. Desde entonces se ha desaparecido el interés por conocer más de la biología de las varias especies de abulón que se encuentran en los litorales de Baja California, y de Baja California Sur en su parte norteña, incluyendo sus islas. En particular, se han estudiado tres especies de abulón (Fig. 1): Haliotis fulgens (abulón azul), H. rufescens (abulón rojo) y H. corrugata (abulón amarillo).

* Investigador del Departamento de Planctón y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas (Cicimar) del Instituto Politécnico Nacional, La Paz, Baja California Sur. D. e. dsique@ipn.mx
Ha sido particularmente interesante determinar las preferencias alimenticias específicas de las poslarvas. Así, algunas investigaciones, se han enfocado sobre la selección en el laboratorio (in vitro) de especies de diatomeas que sean altamente productivas y manejables en cultivo, con el propósito de suministrarlas como dieta monoespecífica de poslarvas y juveniles de abulón en cultivo. Sin embargo, la obtención de dichas cepas no se ha fundamentado en los hábitos epíliticos de los abulones, lo que mandaría recolectar diatomeas que crezcan sobre las rocas donde estos habitan, ya que la práctica común, ya sea técnica o de investigación, ha partido de la premisa de solamente controlar el tamaño de las diatomeas que se suministran a poslarvas y juveniles tempranos de los abulones.

Comúnmente también, las poslarvas de abulón en cultivo se alimentan con formas que habitan en los sedimentos (epipelágicas), pero que crecen en los tanques de cultivo, mientras que los abulones son de hábitos rocosos; consecuentemente, las diatomeas que consumirían serían de hábitos epíliticos. Asimismo, algunos de nuestros estudios en laboratorio indican que las poslarvas de abulón rojo son selectivas cuando se alimentan de las diatomeas que crecen libremente en los tanques de cultivo. Por otro lado, en el caso de juveniles y adultos, se ha supuesto una dieta exclusiva con base en macroalgas; sin embargo, las diatomeas que crecen abundante sobre macroalgas (epífitas), significarían un importante complemento alimenticio (Figura 3). Todo esto nos ha conducido a la pregunta ¿Cuál debe ser la fuente de diatomeas para alimentar abulones en cultivo?

De acuerdo con lo anterior, el objetivo primario de nuestra investigación, que nació hace unos 10 años, ha sido elaborar un inventario de especies de diatomeas de hábitos rocosos (epífitas) que constituyan la dieta potencial de los abulones en sus distintas etapas de desarrollo. Para ello, se han analizado películas de diatomeas recolectadas de la superficie rocosa donde se pesca abulón (Fig. 4). Especial énfasis se ha hecho sobre las diatomeas que crecen sobre las macroalgas que frecuentemente cubren gran parte de las rocas. Otros objetivos son: 2) determinar qué diatomeas son consumidas in situ por juveniles de Haliotis spp. > 20 mm; 3) determinar que proporción de diatomeas se epífitas encuentra en la dieta de abulones.

Figura 1. Abulón rojo cultivado; juvenil de 5 cm.

Figura 2. Poslerva de abulón rojo en cultivo, de una semana de asentada.

Figura 3. Diatomeas epífitas del alga roja Plocamium cartilagineum, en Bahía Tortugas. Tamaño de las diatomeas 0.1 mm.

Figura 4. Roca típica del submareal en el hábitat del abulón de la Península de Baja California.

APROXIMACIÓN METODOLÓGICA
Se han hecho muestras en sitios de pesca de abulón en Baja California Sur (Fig. 5): Bahía Tortugas (Fig. 6) y Bahía Asunción. Así, se han identificado las diatomeas que viven sobre rocas y macroalgas dentro del hábitat natural de abulones, y se han descrito las asociaciones de diatomeas según su riqueza (S) y diversidad de especies. Se han examinado los contenidos intestinales de juveniles de abulón, identificándose las diatomeas y midiendo su diversidad de especies. Y se ha medido la similitud entre lo que consumen los abulones en su medio natural, con lo que encuentra disponible, de acuerdo con las distintas
Figura 5. Localidades de la Península de Baja California en donde se pesca, cultiva y comercian abulones, explotadas para esta investigación

Figura 6. El autor (de espaldas) y colaboradores recolectando abulones en el ambiente rocoso de Clam Bay en Bahía Tortugas, B.C.S., sitio de pesca del recurso

Figura 7. Contenidos intestinales de abulones jóvenes. Se aprecian abundantes diatomas compactadas en una porción del intestino, principalmente especies de Cocconeis

especies de diatomas implicadas y de sus proporciones.

OBSERVACIONES
Las diatomas bentónicas son ingeridas abundantemente por juveniles de abulón azul y abulón rojo como se aprecia en sus contenidos intestinales (Fig. 7). Junto a estas se aprecian múltiples fragmentos de las macroalgas que ramonean. Consecuentemente, hipotetizamos y confirmamos que la gran mayoría de las diatomas ingeridas por juveniles de *Hallitcis* spp. son formas epífitas. Estas aparecen formando grumos, ya sean solas o adheridas a tejido de macroalga dentro de los intestinos de los abulones.

Las diatomas identificadas en los substratos examinados en sitios de pesca de abulones en Baja California Sur alcanzan hasta ahora los 321 taxa (especies y variedades), los cuales exhiben una gran variedad morfológica (Fig. 8); de estos, 98 se han registrado en los contenidos de sus intestinos. Pocas especies sobresalen, principalmente del género *Cocconeis* (Fig. 9).

Al examinar la estructura de las asociaciones de diatomas notamos que existen diferencias importantes entre las asociaciones en su medio natural y las que se hallan en su tránsito digestivo. Por ejemplo, la diversidad de especies medida muestra valores medios en el ambiente natural, pero extremos en los contenidos intestinales.

<table>
<thead>
<tr>
<th>Diatomas disponibles</th>
<th>Diatomas ingeridas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversidad (H') = 2.83 - 3.91</td>
<td>H' = 1.1 - 4.42</td>
</tr>
<tr>
<td>Equidad (j') = 0.588 - 0.751</td>
<td>j' = 0.23 - 0.796</td>
</tr>
</tbody>
</table>

Ello sugiere una cierta forma de selectividad que no hemos podido interpretar con certeza. Para complicar más el panorama, la similitud entre muestras no muestren relación aparente entre lo que hay disponible en el medio y lo que ingieren los abulones, ni entre los contenidos intestinales de abulones de una misma especie.

CONCLUSIONES
1. Se debe reevaluar la importancia de diatomas en la dieta de juveniles de abulones, para los que se supone que su sustento primordial son macroalgas, sobre todo de las formas epífitas que son invariablemente consumidas con la macroalga.

2. La fuente de diatomas para alimento de juveniles de abulones en cultivo deben ser epífitas de macroalgas, por lo que en los tanques de cultivo se recomienda la introducción de macroalgas adheridas a rocas de su ambiente natural.

3. En cuanto a los esfuerzos de colegas por perpetuar especies de diatomas que sirven de alimento a una sola especie de abulones en cultivo, se recomienda seleccionar entre las especies comunes en los tractos digestivos de abulones silvestres (*Cocconeis*).
RECONOCIMIENTOS

REFERENCIAS

Figura 8. Variedad de formas y de especies de diatomeas en el ambiente rocoso de los abulones y que son consumidas, principalmente junto con macroalgas

Figura 9. Especies de Cocconeis, formas dominantes de diatomeas en la dieta de abulones jóvenes
Mauricio Terrones Maldonado recibió el Premio de la Academia de Ciencias del Mundo Desarrollado (TWAS) 2005, en el área de Ingeniería. Es el científico más joven en recibir el galardón.

Fue alumno e investigador del equipo del Harold W. Kroto, Premio Nobel de Química 1996.

Su grupo de investigación es considerado de los 20 mejores en el mundo en el campo de la nanotecnología del carbono.

Un mexicano en el país de los nanotubos de carbono

Octavio Parra Zendejas

Periodista científcico de Conjversus
El carbono es uno de los cuatro elementos fundamentales para la vida —los otros tres son el hidrógeno, el oxígeno y el nitrógeno—, ha sido de los más estudiados por la ciencia. No fue sino hasta 1985 que se descubrió una nueva forma en la que los átomos de carbono se forman en la naturaleza (además del grafito y el diamante): una estructura esférica parecida a un balón de fútbol, compuesta por 60 átomos de carbono presente y abundante en estrellas y galaxias, conocida como fullereno y cuyo descubrimiento les valió a Harold W. Kroto, Robert F. Curl y Richard E. Smalley el Premio Nóbel de Química en 1996.

A partir de entonces, el recorrido de los libros de ciencia ha sido profundizar más acerca sobre estas estructuras, poder diseñarlas y fabricarlas en los laboratorios. Lograr manejar a los átomos en distintas formas, para así aprovechar sus características como maleabilidad, conductividad, dureza, resistencia, entre otras, incluso fabricar nuevos materiales a partir de la manipulación de estructuras tan diminutas como los átomos llamadas nanoestructuras. Dichas estructuras son del orden de nanómetros —un nanómetro es la millonésima parte de un milímetro— que tienen diversas formas y texturas, quizás la más conocida son los nanotubos de carbono que son fullerenos enrollados en forma de tubos de dimensiones atómicas. Estos pueden llegar a ser 100 veces más resistentes que el acero y seis veces más ligeros que dicha aleación. En la actualidad los nanotubos de carbono se utilizan en la fabricación de compuestos poliméricos con propiedades mecánicas y eléctricas superiores a otros materiales, como emisores de electrones útiles en la fabricación de monitores y pantallas de televisión planas y de alta definición con bajos consumos energéticos, en la fabricación de pantallas y baterías de teléfonos celulares y computadoras portátiles, sensores muy eficientes de gases tóxicos, compuestos nanoestructurados para raquetas de tenis y palos de golf. En el campo de la medicina los nanomateriales de carbono tienen grandes posibilidades de aplicación por ejemplo, como inhibidores de bacterias y virus patógenos, compuestos para el desarrollo de vacunas contra el cáncer y el sida.

Uno de los científicos más destacados en el campo de la nanotecnología del carbono es el mexicano Mauricio Terrones Maldonado, investigador del Instituto Potosino de Investigación en Ciencia y Tecnología (IPICYT) del Consejo Nacional de Ciencia y tecnología (Conacyt).

El grupo de investigación dirigido por Mauricio y su hermano Humberto Terrones Maldonado es considerado de los mejores 20 en el mundo en lo que se refiere a la nanotecnología del carbono. Su equipo tiene colaboración estrecha con investigadores del Massachusetts Institute of Technology (MIT), de los Estados Unidos, del Max-Planck Institut, en Alemania, entre otros.

El doctor Mauricio Terrones Maldonado fue galardonado con el premio de la Academia de Ciencias para el Mundo en Desarrollo (TWAS por sus siglas en inglés) en el área de Ingeniería. El reconocimiento le fue entregado por Luis Ignacio Luíz da Silva, presidente de Brasil, en septiembre pasado. Mauricio Terrones Maldonado con sólo 37 años de edad, es el científico más joven en recibir dicho reconocimiento, el cual se le otorgó por sus excepcionales contribuciones a la síntesis y caracterización de nuevos nanomateriales basados en carbono. El investigador forma parte del grupo selecto de 30 mexicanos que son
míembros de la TWAS. La academia es una organización autónoma internacional, fundada en la ciudad de Trieste, Italia por un grupo de destacados científicos encabezados por el pakistaní Abdus Salam, Premio Nóbel de Física en 1979. A esta academia pertenecen más de 600 miembros de 60 países en desarrollo.

PIONEROS DE LOS NANOTUBOS DE CARBONO

"Hasta hace apenas unas décadas, se consideraba que ya se sabía todo del carbono, sin embargo, resulta que se pueden desarrollar estructuras de diferentes características. Ahora lo que se tiene que hacer es controlarlas; cambiar algunos parámetros en el experimento para obtener formas distintas y entender su formación", explicó a Conversus el doctor Mauricio Terrones Maldonado, quien desde hace más de diez años inició su investigación en la experimentación de nuevas formas de carbono y en la producción controlada de nanomateriales y sus aplicaciones. Sus primeros trabajos los realizó durante sus estudios de doctorado (1994-1997) en la Universidad de Sussex, Inglaterra, bajo la supervisión directa del doctor Harold W. Kroto, Premio Nóbel y miembro de la Royal Society de Gran Bretaña.

"En la década de los noventa formé parte del grupo de estudiantes de posgrado y posteriormente como investigador en el grupo de Sir Harold W. Kroto. Los trabajos del equipo del profesor Kroto con nanotubos de carbono fueron los primeros en el mundo, eso para mí fue muy emocionante. En el laboratorio había muchas cosas que hacer; todo lo que se hacía era novedoso. Una de las cosas que más me impresionaron es que el doctor nos impulsaba a los jóvenes para desarrollar nuestras ideas y proyectos, trabajamos en lo que más nos gustaba. Mis primeras investigaciones se dirigieron a la experimentación de nuevas formas de carbono y fullerenos, trabajé en la producción controlada de nanomateriales y sus aplicaciones, en la realización de simulaciones moleculares por computadora y experimentos en fulleremos usando diferentes técnicas de caracterización como rayos X, difracción electrónica, entre otros. Después realicé proyectos enfocados al desarrollo de nuevas estructuras gráficas."

El investigador tuvo la oportunidad de llevar a cabo sus propias ideas y proyectos en el laboratorio de la Universidad de Sussex. Una de sus aportaciones fue la modificación de la estructura superficial de los nanotubos de carbono lineal que continúa trabajando —por medio del remplazo de átomos de carbono por átomos de nitrógeno, lo que permite que los nanomateriales adquieran nuevas y distintas propiedades físico-químicas con aplicaciones industriales. Así también trabajó en el dopaje (inclusión) de átomos de boro en nanotubos de carbono para su crecimiento.

Otros de sus aportes se refieren al desarrollo de un método para el crecimiento de nanotubos de carbono por medio del calentamiento de hidrocarburos en la presencia de un metal (cobre, níquel, hierro) en donde las partículas diminutas llamadas clusters de estos materiales permiten la catálisis del crecimiento de un nanotubo.

En relación a su ingreso al grupo del Premio Nóbel comenta: "Mi hermano Humberto —quién es seis años mayor— cursaba el doctorado en la Universidad de Londres. Él me sugirió que hiciera el doctorado en química-física en la Universidad de Sussex, y que buscara la oportunidad de incorporarme al equipo de Kroto. Humberto estaba bien informado sobre las líneas de investigación del científico inglés, incluso llegó a colaborar en varias ocasiones con él. Humberto me dijo que los trabajos y las aportaciones de Kroto lo convertirían en unas de las cartas fuertes para ganar el Nóbel. El tiempo le daría la razón."
TRABAJAR CON NANTUBOS

Mauricio Terrones Maldonado después de realizar su doctorado continuó con el posdoctorado en la misma institución y en la Universidad de California en Santa Bárbara, Estados Unidos. En 1999, Terrones Maldonado ingresó como investigador al Instituto de Física de la Universidad Nacional Autónoma de México (UNAM), campus Juriquilla en Querétaro. En ese mismo año la Fundación von Humboldt lo reconoció con una becas para realizar estudios sobre nanoestructuras de carbono por un período de 14 meses en el prestigioso Max-Planck Institut für Metallforschung en la ciudad de Stuttgart, Alemania.

A partir de 2001, el doctor Mauricio Terrones Maldonado se incorporó como investigador en la División de Materiales Avanzados del IPICYT y es además miembro del Sistema Nacional de Investigadores (SN) nivel tres.

“La línea de investigación que he desarrollado desde mis estudios de posgrado ha sido básicamente la síntesis de materiales o nanoestructuras de carbono. En el Laboratorio de Síntesis del IPICYT hacemos diferentes morfologías que incluyen formas tubulares o nanotubos de carbono; trabajamos en nanoestructuras mesoporas, es decir, que poseen muchos poros. También utilizamos materiales laminares parecidos al grafito para la obtención de otro tipo de nanoestructuras. Desde el punto de vista de las nanoestructuras magnéticas realizamos la síntesis y caracterización de todos estos materiales con miras a aplicaciones diversas. Cada uno de los materiales tiene distintas aplicaciones de acuerdo a sus propiedades.”

El doctor Terrones Maldonado comentó sobre las posibles aplicaciones de nanomateriales de carbono en los próximos años. “Las nanopartículas incluidos los nanotubos de carbono podrían usar en la medicina como inhibidores de virus y bacterias. Los nanotubos de carbono pueden ser recubiertos en sus superficies con algunos elementos para combatir las estructuras de virus y microorganismos patógenos. Otras de las posibilidades son el encapsulado de medicamentos en nanotubos de carbono para introducirlos al cuerpo humano; el desarrollo de vacunas contra el sida y el cáncer. Erradicar algunos tipos de cáncer sin necesidad de afectar o dañar todo el organismo a través de radioterapia o quimioterapia. Mi sueño es que algún día encontremos —como ocurrió con el descubrimiento de los antibióticos— nanoestructuras que pueda aniquilar virus y bacterias que ocasionan enfermedades y muerte en miles de personas en el planeta.”

El joven científico señaló que en la actualidad los nanotubos de carbono se utilizan en el campo de los materiales avanzados o ciencias de materiales. “Los nanotubos pueden llegar a ser cien veces más resistentes que el acero y seis veces más ligeros que dicho aleación; son muy atractivos debido a que sus propiedades pueden ser transferidas hacia otros materiales. Por ejemplo, si a 100 kilogramos de polímeros se les añade 10 gramos de nanotubos de carbono se obtendrán polímeros con mejores propiedades mecánicas y eléctricas por ejemplo, mayor resistencia mecánica y conductividad de la electricidad. Por cierto, nuestro grupo de investigación tiene una amplia colaboración con industrias nacionales interesadas en obtener polímeros y otros materiales con alto valor agregado utilizando nanotecnología y nanoestructuras de carbono”.

El doctor Terrones Maldonado mencionó que los nanotubos de carbono se aplican en la electrónica por ejemplo, en las baterías de iones de litio para teléfonos celulares y computadoras portátiles; como emisores de electrones para la fabricación de monitores y pantallas de televisión. “Los nanotubos emiten electrones a voltajes muy bajos para el encendido de las pantallas de fósforo, que además disminuyen el consumo de energía en los monitores de televisión, los cuales son mejores que los actuales e incluso que los monitores de cristal líquido. Empresas como Samsung, Motorola y Sony desarrollarán a partir de nanotubos de carbono monitores y pantallas de televisión y para teléfonos celulares.

LA CIENCIA EN MÉXICO

De acuerdo al nanotecnólogo, México cuenta con gran potencial humano para hacer ciencia de frontera en varias campos; sin embargo, el problema radica en las escasas oportunidades hacia los investigadores jóvenes a través de la disponibilidad de plazas de trabajo, mejores condiciones para la investigación y la promoción en las universidades y centros de investigación nacionales.

“El país cuenta con estudiantes brillantes que quieren y pueden hacer nanociencias, lo importante es brindarles apoyo e impulsarlos en sus proyectos porque a final de cuentas todos estamos en el mismo barco, que es México.”

“En México la ciencia desafortunadamente funciona de forma piramidal, donde los más viejos y las llamadas ‘vacas sagradas’ están arriba e imponen sus criterios verticalmente a los jóvenes investigadores que generalmente están a bajo. En ocasiones, cuando sobresale un grupo de investigación o destaca un joven investigador se le aplica el ‘cangrejismo’, se frena y ponen trabas a las iniciativas y esfuerzos. En mi caso personal me formé y me trabajé mucho en el extranjero, y es en el exterior donde se ha reconocido mi trabajo, situación que lamenta mucho. Nadie es profeta en su propia tierra.”

Explicó que para el desarrollo del país se requiere de una política de Estado en ciencia y tecnología y que los políticos de todos los niveles y el Presidente de la República estén plenamente convencidos de la importancia de invertir más en educación y ciencia. “Si le preguntas a un político sobre la posibilidad de construir una nave espacial o un satélite de manufactura mexicana, seguramente se reirá y dirá que no es posible. En México no contamos en nuestra capacidad, somos ‘malinchistas’. También existen honrosas excepciones de gobernadores con visión que quisieran destacar como es el caso de San Luis Potosí, el señor Gobernador y el Consejo Potosino de Ciencia y Tecnología han apoyado al desarrollo de la ciencia en el estado. Espero que este tipo de iniciativas se propagan a nivel nacional y que en el Estado se intensifique el apoyo. Pienso que tenemos posibilidades de realizar ciencia de clase mundial y convertirnos algún día en potencia, siempre y cuando el Estado cumpla y garantice los fondos, recursos y apoyos necesarios y la industria se comprometa a invertir.”

SUÑOS

“Hago ciencia porque me apasiona; espero algún día hacer una aportación importante para el país y la humanidad. Lo más importante es trabajar arduamente y en equipo, con los pies bien puestos sobre la Tierra, en lo que te gusta. Para mí el hacer nanotecnología me emociona y hace muy feliz .”
¿Por qué
el cáncer?

En México existe un combate legítimo en contra de este terrible mal. El objetivo principal es evitar que continúe la creciente tendencia de los últimos años en los pacientes afectados por el cáncer, pues de seguir así podría llegar en pocos años a marcar la muerte de uno de cada cuatro decesos entre los mexicanos. En la actualidad sabemos que el cáncer no debe ser una fatalidad. Se ha demostrado que se puede reducir su incidencia conjugando los esfuerzos de prevención y tratamiento oportuno.

* Doctor en ciencias e investigador Asociado de la Unidad de Investigación Médica en Enfermedades Oncológicas del Hospital de Oncología, Centro Médico Nacional Siglo XIX, IMSS
Hoy en día, se puede decir que más de un 40 por ciento de los enfermos de cáncer tienen grandes posibilidades de curarse o recibir un tratamiento que les prolongue la vida con una calidad considerable. Por otra parte, gracias a los mejores métodos de prevención, existen evidencias sobre importantes retrasos en la aparición de algunos tipos cáncer en países desarrollados. Un ejemplo lo representa el cáncer de estómago, en base al mejoramiento de los hábitos alimenticios y el cáncer de pulmón, con apoyo de las campañas anti-tabaquismo.

Los datos estadísticos y demográficos sobre fallecimientos por cáncer en nuestro país ponen de manifiesto la existencia de variaciones significativas en cuanto a los riesgos de aparición de los cinco cánceres más frecuentes (pulmón, mama, cuello uterino, próstata, leucemia). Estas diferencias demuestran que la diversidad de los modos de vida, de las condiciones de trabajo, de las características del entorno y de los grupos humanos existentes, así como de nuestra genética de raza, desempeñan un papel importante en nuestra casuística.

La naturaleza exacta de los factores responsables de estas diferencias no es clara en todos los casos, pero hoy podemos aceptar que casi todos los cánceres tienen su origen en dichos factores, algunos de los cuales pueden ser identificados y estudiados para modificar su potencial cancerígeno.

Hoy en día, se puede decir que más de un 40 por ciento de los enfermos de cáncer tienen grandes posibilidades de curarse o recibir un tratamiento que les prolongue la vida con una calidad considerable.

MÉXICO, UNA MEJOR ATENCIÓN DEL PACIENTE CON CÁNCER

De igual manera como se han establecido programas multinacionales en otros continentes (p.e. “Programa Europa contra el Cáncer, 1986”) para la lucha contra el cáncer, en nuestro país se ha generado una considerable preocupación por la salud de parte de las autoridades sanitarias y las dependencias responsables de los programas involucrados. Dichos programas se articulan en torno a una doble propuesta: evitar un número importante de casos de cáncer y la detección oportuna de éstos, a fin de aumentar las posibilidades de curación. El objetivo final sigue siendo reducir significativamente la mortalidad anual debido al cáncer en México. Los programas cubren los cuatro rubros más importantes en la lucha contra el cáncer: prevención; información y educación sanitaria; formación de personal de salud especializado e investigación.

Entre estos programas destacan los establecidos por el Secretaría de Salud (seguro popular) y por los institutos nacionales de salud, en particular el Instituto Nacional de Cancerología. De igual manera debe destacarse la labor del Instituto Mexicano del Seguro Social (PREVIÉN) y en especial, el trabajo que realiza el Hospital de Oncología del Centro Médico Nacional Siglo XXI, también del IMSS.

Sin embargo los esfuerzos siguen siendo limitados y carentes de una política económica agresiva y decidida a cumplir con los objetivos establecidos. El trabajo parlamentario se ha visto frío y pasivo ante la alarmante evidencia del incremento en la aparición de nuevos casos de cáncer en México. ¿Qué hace falta en nuestro país para enfrentar con éxito este problema de salud? La respuesta podría ser: promover la canalización de recursos a través de mejores incentivos fiscales dirigidos al sector privado, además de
ESTABLECER PARTIDAS PRESUPUESTALES PERMANENTES, CONTINUAS Y ESPECÍFICAS HACIA ESTAS ACTIVIDADES. EN EL MISMO SENTIDO, DEBE DE APOYARSE DE MANERA DECISIVA Y PERMANENTE LA INVESTIGACIÓN CIENTÍFICA DEL CÁNCER EN NUESTRO PAÍS, PROMOViendo LA INVESTIGACIÓN BÁSICA DIRIGIDA A ESTUDIAR LOS ASPECTOS EPIDEMIOLÓGICOS, BIOGÉNETICOS Y MOLECULARES QUE CARACTERIZAN LOS TIPOS DE CÁNCER DE MAYOR IMPACTO EN NUESTRA POBLACIÓN, ADIÉNTE DE IMPULSAR CON MAYOR ÉNFASIS LA INVESTIGACIÓN CLÍNICA EN NUESTRAS INSTITUCIONES PÚBLICAS Y PRIVADAS, LO QUE EXIGE MEJORAR LA RED DE SERVICIOS DE ATENCIÓN AL PACIENTE CON CÁNCER, MÁS ALLÁ DE LA TINA EN EL PAPEL, ATENDIENDO LA URGENTE NECESIDAD DE AMPLIAR Y MEJORAR LA INFRAESTRUCTURA DE LOS PRINCIPALES CENTROS DE TRATAMIENTO A NIVEL NACIONAL. ES UNA LÁSTIMA QUE LOS ENORMES EFORTUROS QUE SE GENERAN A DÍA EN HOSPITALES TALES COMO EL INSTITUTO NACIONAL DE CANCERLOGÍA, SE VEAN LIMITADOS POR SU FALTA DE INFRAESTRUCTURA FÍSICA Y NO POR LA CALIDAD DE SU PERSONAL MÉDICO, PARAMÉDICO Y CIENTÍFICO. LOS EFORTUROS PARA MEJORAR LA ATENCIÓN DEBEN COMBINARSE CON LOS APoyOS Y RECURSOS GUBERNAMENTALES CON LOS DISPONIBLES EN EL SECTOR PRIVADO Y SOCIAL, EN DONDE TODOS Y CADA UNO DEMOS RESPUESTA DE ACUERDO AL CORRESPONDIENTE NIVEL SOCIOECONÓMICO, COMPARTIENDO LA RESPONSABILIDAD PARA SOLUCIONAR ESTA NECESIDAd.

LA PREVENCIÓN, CLAVE DE TODOS LOS PROGRAMAS
El tabaco y el alcohol están, sin duda alguna, en el origen de la tercera parte, aproximadamente, de los tipos de cáncer registrados en México. La alimentación podría representar el origen de otro tercio de los mismos. La exposición profesional a ciertas sustancias químicas, la exposición a los rayos ultravioleta, la persistencia de algunas infecciones virales y la exposición a la radiactividad, son quizás el origen del tercio restante del total de los casos registrados.

LA LUCHA CONTRA EL TABAQUISMO
Está claro que el 85 por ciento de los cánceres de pulmón tienen su origen en el tabaquismo, al igual que los detectados en otros tejidos que están en contacto con el humo del tabaco, tales como los labios, la lengua, la boca, la garganta, el esófago, el páncreas y las vías urinarias. La adopción de medidas como el etiquetado de los paquetes de cigarrillos, en donde se hace obligatoria la advertencia médica al consumidor (“Fumar produce cáncer”) originada en Irlanda en 1991, ha sido sin duda una medida importante en esta lucha. Por su parte, la prohibición de toda publicidad a favor del tabaco en la televisión, ha sido otro gran apoyo, éxito que por diversas razones aún no han alcanzado las limitaciones impuestas a fumar en lugares públicos, entre las que se encuentra la escasa o nula conciencia del fumador. Algunas acciones adicionales deben centrarse en la reglamentación de la publicidad del tabaco en todos los medios, incluyendo la publicidad encubierta u subliminal. También debe establecerse una escalada de impuestos al tabaco, a fin de generar alzas considerable en los precios de los cigarrillos, de modo que puedan canalizarse esos recursos a la investigación científica y a programas de atención a los pacientes.

UNA MEJOR ALIMENTACIÓN DEL MEXICANO
No existen dudas de las consecuencias que el tabaquismo y el consumo excesivo de alcohol traen con relación a la aparición de cáncer. Sin embargo, no puede decirse lo mismo con respecto a ciertas prácticas alimenticias. La investigación clínica y científica registra algunos datos importantes: el riesgo de padecer cáncer por exceso de peso, por llevar una alimentación pobre en frutas y verduras frescas o también por falta del consumo de fibra en nuestra dieta. Que acciones deben aplicarse para apoyar este rubro: mejorar el etiquetado de las mercancías y de los productos agroalimentarios; recopilar información sobre la relación existente entre la alimentación y el cáncer, así como promover la investigación científica al respecto, elaborar paquetes de recomendaciones nutricionales y promover campañas de información y educación sanitaria en los medios de mayor impacto.

PROTECCIÓN CONTRA LOS AGENTES CANCERÍGENOS
Sobre este punto la propuesta se centra en continuar impulsando al menos las siguientes cuatro iniciativas: establecer y ampliar el inventario de las sustancias químicas cancerígenas, adoptar mejores y nuevas normas de protección a los trabajadores expuestos a tales sustancias, proteger a la población contra las radiaciones ionizantes, en particular, respecto a los niveles máximos tolerados de contaminación en los productos alimenticios y por último, aplicar nuevas medidas de protección a los consumidores.
Sin duda, la detección precoz de los diversos tipos de cáncer de mama aumenta de manera significativa las posibilidades de curación en aquellas mujeres que a partir de los 50 años, rutinariamente se someten al estudio mastográfico. Es claro que no es suficiente, se requiere diversificar las pruebas aplicadas, además de mejorar los indicadores de predicción y detección precoz, el trabajo está ahí en la clínica, con los pacientes.

Actualmente se estudia la utilización de medicamentos de aplicación local que eliminan en su totalidad las lesiones precancerosas y por estimulación local del sistema inmunológico negatizan la presencia de un agente viral estrechamente ligado a la aparición del cáncer cervical: el Virus del Papiloma Humano.

No se pueden olvidar los nuevos tratamientos preventivos contra el desarrollo de las lesiones precancerosas y cancerosas del cuello uterino, como las vacunas acústicamente disponibles en el mercado, aún cuando su espectro de reconocimiento viral es muy limitado. Existen más de 100 tipos virales diferentes y las vacunas no cubren más allá de cuatro, hecho que, aún cuando representa un muy bajo porcentaje, actúa sobre los tipos más frecuentes. Por otra parte, debe considerarse que al establecer un programa de prevención masivo con algunas de estas vacunas de espectro viral limitado, podría promoverse el incremento de la prevalencia de las infecciones por otros tipos virales, posibilidad que merece un poco de reflexión antes de tomar decisiones que podrían ser de alto costo social.

UN CÓDIGO MEXICANO CONTRA EL CÁNCER
La Unión Europea estableció en 1990 un grupo de prestigiosos cancerólogos pertenecientes a los ministerios de sanidad de los doce estados miembros y de las asociaciones y ligas de lucha contra el cáncer, afirmando que: “Si se respetaran los diez mandamientos europeos, se produciría una significativa reducción del número de fallecimientos por cáncer en la comunidad europea, que para el año 2000 podría ser del 15 por ciento”. Es discutible evaluar 16 años después si esta meta se logró, pero las acciones realizadas en aquel tiempo están ahora generando una disminución en la frecuencia de la aparición de nuevos casos.

INFORMAR Y EDUCAR PARA SALVAR VIDAS
Cuando se diagnostica cáncer, se manifiestan la angustia y la desesperación en quien lo padece. Padece cáncer en nuestros días no debe considerarse una condena a muerte. Para contrarrestar lo anterior se requiere reforzar las acciones de información y educación en salud a nivel nacional, buscando el apoyo de todas las asociaciones y ligas de lucha contra el cáncer y de los médicos familiares en las clínicas de atención primaria, incluyendo también a los médicos de las colonias, de los barrios, profesionales que cumplen una labor invaluable de servicio comunitario, que en la mayoría de las veces representa el primer contacto médico con el paciente.

Es necesario compartir las experiencias obtenidas en todos los niveles de atención, generar estrategias que no dupliquen esfuerzos ni ocasionen mayores gastos en el tratamiento, ya de por sí elevado, de esta enfermedad.

Todos los ámbitos: académico, científico, social, gubernamental, etc., debemos comprometernos a realizar acciones específicas y en especial a difundir un “Código contra el Cáncer”, publicando folletos o números especiales en revistas de prestigio y especializadas, considerar también todos aquellos medios donde se pueda generar un impacto social importante, organizar jornadas de trabajo a puertas abiertas, invitando a la población a participar, para que luego puedan apoyar pacientes o familiares de pacientes en los que el cáncer dejará marcas dolorosas. Este modelo no es nuevo, se desarrolla en los más grandes eventos médicos, como el realizado anualmente por la American Association for Clinical Oncology, a través del programa Cancer Survivor.

Hagamos nosotros la Jornada Nacional de Lucha contra el Cáncer como un esfuerzo colectivo sin marcas partidistas, electorales o de mercado, el primer gran ejemplo se dio en Europa con el primer plan de acción 1987-1989 denominado “Año Europeo de Información sobre el Cáncer”; su éxito fue considerable y su clausura (9 de enero de 1990) se transmitió a gran escala a través de Eurovisión.

El segundo plan de acción europeo 1990-1994, continuó con un programa de sensibilización al público, mediante el establecimiento de las “semanas europeas” organizadas cada año durante la segunda semana de octubre.

Finalmente, en todos los programas con proyección social debe entenderse...
alguno fundamental: actuar con particular énfasis en las escuelas de educación básica para fomentar no solo la educación en la salud, sino apuntalar la salud social, considerando la generación de conciencia colectiva y activa en los miembros más sensibles de toda estructura humana y social: los niños, quienes además serán los herederos del mundo del mañana. Una buena cosecha siempre dependerá de una buena siembra.

MEJORAR PARA CAMBIAR AL PERSONAL DE LA SALUD EN LA LUCHA CONTRA EL CÁNCER
El papel más complejo y delicado en la lucha contra el cáncer la desempeñan los especialistas médicos, enfermeras y enfermeros, los dentistas y estomatologistas, los patólogos, ginecólogos, etc.; mejorar su preparación respecto al combate contra el cáncer se traducirá sin duda en la mejor de las estrategias de prevención y tratamiento de dicho mal. Los objetivos planteados deben considerar el establecimiento de programas de intercambio de experiencias entre los miembros de las diferentes estructuras y organizaciones de tratamiento contra cáncer; la generación de contenidos bibliográficos dirigidos al personal involucrado; la generación de guías institucionales para su manejo y tratamiento que contengan criterios unificados en todo el sector salud, orientadas a optimizar y asegurar el manejo adecuado y de mejor calidad. De la misma manera, debe promoverse la capacitación del personal especializado mediante el intercambio con los centros de tratamiento más reconocidos en el mundo.

LA INVESTIGACIÓN CIENTÍFICA EN CÁNCER
Los avances en la investigación científica deben orientarse a refinar los métodos y las estrategias de detección temprana, así como el tratamiento específico y oportuno del flagelo. Esto parece simple, pero requiere de la integración de recursos a nivel interinstitucional, de manera que se puedan canalizar apoyos a iniciativas innovadoras, evitando al máximo la duplicidad, permitiendo con esto, la creación de un verdadero espacio de investigación mexicana sobre el tema. En cuanto a la detección y diagnóstico, debe profundizarse básicamente en dos líneas de investigación: el análisis automatizado de biopsias y material biológico proveniente de los pacientes con cáncer y los métodos de detección oportuna a partir de potenciales marcadores biológicos o perfiles de expresión genética, que permitan establecer la estrategia terapéutica óptima para cada paciente. La medicina individualizada puede parecer una alternativa muy costosa, pero si el proceso es bien llevado, resultará mucho más sencilla, menos onerosa y rendirá mejores resultados. Un programa contra el cáncer debe incluir líneas de investigación sobre nuevas terapias antineoplasticas, específicamente en lo que se refiere a: generar nuevas biomoléculas para la producción de medicamentos anticancerígenos; reducir la toxicidad de los esquemas de medicación tradicionales o convencionales; propuestas innovadoras relativas a la administración de sustancias antineoplásicas; e investigaciones clínicas orientadas a generar estrategias originales y modernas, acordes a nuestra realidad social y asistencial.

Los avances en la investigación científica deben orientarse a refinar los métodos y las estrategias de detección temprana, así como el tratamiento específico y oportuno del flagelo.

Y AL FINAL...
En esta lucha contra el cáncer, el sufrimiento del paciente y de los miembros de su familia debe llevarnos a buscar la conjugación de las acciones desarrolladas en todos los ámbitos de nuestra sociedad, ya sean estos institucionales o personales, legales políticos o sociales, agrarios, del medio ambiente, de asistencia social, del trabajo, etc., y lo más importante, establecer políticas para la salud y la atención del paciente de manera sinérgica y cooperativa hacia el logro de la mejor estrategia en este sentido.

En esta lucha contra el cáncer, el sufrimiento del paciente y de los miembros de su familia debe llevarnos a buscar la conjugación de las acciones desarrolladas en todos los ámbitos de nuestra sociedad, ya sean estos institucionales o personales, legales políticos o sociales, agrarios, del medio ambiente, de asistencia social, del trabajo, etc., y lo más importante, establecer políticas para la salud y la atención del paciente de manera sinérgica y cooperativa hacia el logro de la mejor estrategia en este sentido.
Suscríbete a la revista cómoves?
Revista mensual de divulgación de la ciencia de la UNAM

- ¿Cómo ves tú a la ciencia?
- ¿Cómo ve la ciencia el mundo?

Informes: 5665 2207 • www.comoves.unam.mx
Investigación en cáncer, esperanza para muchos

José Luis Camillo Aguado*

El cáncer en el mundo llegó a ser una causa importante en el mundo hasta el siglo XX. Antes de 1900, la mayoría de las muertes se debía a enfermedades infecciosas, como la tuberculosis, la influenza y la neumonía. En países desarrollados, debido a una mejoría en las condiciones sanitarias, alimenticias y de higiene personal, así como al desarrollo de vacunas y antibióticos, tales enfermedades ya han sido prácticamente eliminadas como causa mayor de defunción, y las principales causas de muerte son las enfermedades cardiovasculares y el cáncer.

*Periodista científico de Conversus.
El término cáncer incluye más de 100 formas de la enfermedad, pero los mecanismos moleculares de todas ellas son similares. Las células normales crecen y proliferan en respuesta a señales o estímulos provenientes de otras células del organismo; sin embargo, las células cancerosas ignoran los controles normales de proliferación, y en general crecen respondiendo a señales propias, estimuladoras de la proliferación celular.

Diagnóstico y terapia molecular del cáncer

El diagnóstico molecular de las alteraciones genéticas en oncogenes y anti-oncogenes es de gran importancia clínica y permite lograr un pronóstico acertado, además del diseño de nuevos métodos terapéuticos en cáncer humano. Los métodos de diagnóstico para detectar la presencia de un tumor maligno previa a la aparición de los síntomas pueden salvar muchas vidas. Los tumores detectados oportunamente son más fáciles de atender y resulta más sencillo detener su crecimiento, antes de que causen daños irreversibles.

Los fallecimientos por cáncer se pueden evitar por medio de tres formas: prevención, diagnóstico temprano y terapias efectivas. De ahí la trascendencia de la investigación científica desarrollada en torno a estos rubros.

Terapia epigenética del cáncer

En México, el doctor Alfonso Dueñas González, director de Investigación del Instituto Nacional de Cancerología (Incan) e investigador del Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México (UNAM), conduce un proyecto para demostrar que la terapia epigenética basada en la administración de hidralazina, medicamento contra la hipertensión, y el valproato de magnesio, compuesto anticonvulsivo, es útil contra el cáncer, ya sea administrada como terapia única o asociada a la quimioterapia o radioterapia.

El doctor Dueñas explicó en entrevista exclusiva para *Conversus*, que el cáncer es una enfermedad donde las células presentan modificaciones en sus genes, y las cuales después de años de permanecer alteradas, se transforman en células malignas. Ahora sabemos que los cambios no sólo son genéticos, también hay cambios epigenéticos. Las modificaciones genéticas fueron descritas en la literatura inicialmente, son más conocidas, y consisten en alteraciones físicas o estructurales de los genes, donde se daña la secuencia de bases ya sea por mutaciones (cambio de una base por otra o pérdida de una parte de gen), translocaciones (cuando una parte de un gen establecido en cierto cromosoma emigra a otro cromosoma), o amplificaciones (cuando se producen muchas copias del mismo gen). Estas alteraciones afectan a los oncogenes (que facilitan el cáncer, estos es, actúan como aceleradores) y a los genes supresores del cáncer (los que normalmente regulan el crecimiento y proliferación de las células, de tal modo, que su función normal es actuar como freno).

Los fallecimientos por cáncer se pueden evitar por medio de tres formas: prevención, diagnóstico temprano y terapias efectivas. De ahí la trascendencia de la investigación científica desarrollada en torno a estos rubros. Tanto los oncogenes como los supresores sufren alteraciones genéticas en el caso de presentarse cáncer, que a los oncogenes le confieren un carácter de ganancia de función, mientras que los supresores funcionan menos. En un símil con un vehículo, parece que el acelerador se quedara atascado y el freno ya no sirviera, lo que redituaba en un balance positivo hacia la estimulación, hacia la proliferación desmedida de células, generando los tumores o neoplasias.

En los últimos años ha habido un auge en el estudio de las alteraciones epigenéticas en el cáncer, es decir, aquellas alteraciones del estado de activación o inactivación de los genes, en este caso, aquellos relevantes para el cáncer. En el núcleo de las células, la información genética o ADN se encuentra en la forma de cromatina una mezcla del ADN mismo y proteínas llamadas histonas que forman las unidades
funcionales de la información genética llamadas _nucleosomas_. En el cáncer, las alteraciones epigenéticas consisten principalmente en la metilación del ADN y la desacetilación de histonas que son responsables de inactivar la función de genes supresores. A diferencia de las alteraciones genéticas que son estructurales e irreversibles, las epigenéticas son funcionales y por lo tanto reversibles. La terapia de remplazo genético (para corregir las alteraciones genéticas) no ha tenido un papel importante por su dificultad técnica, entre otras desventajas, explica el doctor Dueñas, mientras que la terapia epigenética tiene un futuro mucho más prometedor. En este momento hay muchas compañías farmacéuticas en el mundo que desarrollan compuestos que inhiben tanto la metilación del ADN como la desacetilación de histonas.

Crónica de una investigación

El proyecto de investigación del grupo del doctor Dueñas comenzó a finales de 1999, cuando descubrió que la hidralazina (medicamento usado desde hace más de 30 años para la hipertensión y la insuficiencia cardíaca por sus efectos vasodilatadores) era capaz de desmetilar y reactivar la expresión de genes supresores que estaban apagados. Este fue un descubrimiento importante ya que se demostraba que un medicamento de uso común, poco tóxico y barato podía reactivar la función de genes inactivados en los tumores.

Un grupo alemán descubrió en el año 2001 que el ácido valproico, antiepiléptico y anticonvulsivo usado también hace más de 30 años, era un inhibidor de las enzimas desacetilasas de histonas. A partir de entonces, el grupo del Inca propuso desarrollar la combinación de ambos medicamentos para su uso en el cáncer.

Una gran parte del tiempo que consume el desarrollo de medicamentos nuevos es hacer los estudios de toxicología y farmacología. Pero en el caso de ambos fármacos descritos, los procesos ya eran conocidos, lo cual permitió abreviar y estudiar directamente la eficacia terapéutica del medicamento, primero en el laboratorio, después en animales y luego en humanos.

Lo primero que determinó el grupo mexicano fue que utilizando varias líneas celulares de cáncer en el laboratorio, el tratamiento con hidralazina y valproato de magnesio producía
efectos antitumores, afectando la capacidad de desarrollar metástasis y de revertir la resistencia a la quimioterapia. En estudios con ratón se demostró su eficacia, sobre todo quedó en claro que el tratamiento contra el tumor mediante quimioterapia clásica o convencional se volvía más efectivo cuando se combinaba con los medicamentos antes mencionados. En este momento se están completando estudios fase 2 en donde se están estudiando pacientes con cáncer de mama, cérvix, ovario, testículo y pulmón. Estos pacientes reciben la hidralazina y valproato de magnesio más el tratamiento con quimioterapia y/o radioterapia. En los tres estudios se han obtenido resultados muy prometedores en cuanto a que aumentan la eficacia terapéutica del tratamiento convencional. Como se esperaba, se comprobó el efecto biológico esperado: la desmetilación del ADN y la acelitación de histonas se presentó en las pacientes con cáncer de mama; en donde ya se tienen resultados del análisis de la expresión de todos los genes humanos, tratamiento exclusivo con hidralazina y valproato de magnesio reactivó la expresión de 1 100 genes mientras que disminuyó la expresión de 90 genes en los tumores. Entre los genes que se lograron encender fueron en su mayoría supresores, los que disminuyeron fueron oncogenes.

En el estudio, que incluyó pacientes con tumores muy avanzados y refractarios a la quimioterapia en los que había cánceres de mama, ovario, cérvix y pulmón, se demostró que al tratarlos con la hidralazina y el valproato de magnesio se logró que más del 75 por ciento de los pacientes dejan de progresar o respondieran al tratamiento, lo que demuestra que al afectar la expresión de genes, se sensibiliza la célula maligna a la quimioterapia, lo cual puede ser una práctica efectiva para combatir el cáncer.

Entre otros fenómenos, la terapia epigenética del cáncer le impide al tumor escondese del sistema inmunológico, lo vuelve más susceptible a las defensas naturales del organismo humano. Esta investigación llevada a cabo por un grupo de investigadores del Centro Médico Nacional Siglo XXI en colaboración con el grupo del doctor Dueñas está en vías de publicarse.

En el escenario de que se apriete el tratamiento descrito, redundaría en un fármaco accesible a la población, lo que por ahora está prácticamente fuera del alcance de la gran mayoría de los pacientes, ya que los precios de los productos desarrollados en el Primer Mundo están regidos por las leyes del mercado y para el público en general es como si no existiera tal desarrollo farmacológico, afirma el doctor Dueñas. El costo mensual del tratamiento oral de los dos últimos medicamentos contra el cáncer aprobados en este año, por ejemplo; es de alrededor de 50 mil pesos.

La prueba de oro va a consistir en el efecto del incremento del tiempo de vida en los pacientes. En general, los avances que se logran en el tratamiento del cáncer son pequeños; lo que hacen es aumentar la vida del paciente y la probabilidad de curación, se logra subir un peldaño después de otro en una escalera de un proceso lento pero firme para que un paciente con cáncer prolongue su existencia, recibiendo un tratamiento con fármacos poco tóxicos que mejoren su calidad de vida.

Este proyecto del doctor Alfonso Dueñas para el desarrollo del medicamento contra el cáncer con base en la hidralazina y el valproato de magnesio está siendo desarrollado con la concurrencia del Incan, el Instituto de Investigaciones Biomédicas de la UNAM, la compañía mexicana Psicófora y el Conacyt. De confirmarse la efectividad de esta forma de terapia, sin duda, será una alternativa terapéutica que se agregará al arsenal existente contra el cáncer. De lo que no hay duda, es que será de fácil acceso para la población. Por algo el doctor Dueñas ha sido reconocido con el Premio Miguel Alemán Valdés en el área de Salud, entre otros reconocimientos a su fructífera labor en relación con la terapia epigenética del cáncer.

RESISTENCIA AL CÁNCER, TRANSFIRIBLE EN RATONES

En la versión en línea de Scientific American se informó sobre el descubrimiento de un ratón mutante con la habilidad de rechazar formas agresivas de cáncer. Cruzado con una hembra, este super ratón pasó su resistencia a cerca del 40 por ciento de su descendencia. No importó el número de veces que los investigadores retaran los sistemas inmunológicos de tales ratones con niveles de cáncer millones de veces más poderosos que los requeridos para matar a ratones comunes, ellos se mantuvieron inmunes.

Investigaciones más recientes han encontrado que ratones normales inyectados con células sanguíneas de ratones resistentes al cáncer se convierten, asimismo, en resistentes al cáncer.

"Los leucocitos fueron la causa de la resistencia al cáncer", dice Mark Willingham, de la Universidad de Wake Forest. "No solamente mataron al cáncer cuando se inyectaba conjuntamente con células malignas, pero estos leucocitos pudieron ser usados sucesivamente para tratamiento de tumores avanzados."

El doctor Willingham y algunos colegas están en la fase de estudiar los mecanismos precisos de la transferencia de resistencia. De forma contraria a su hipótesis inicial, los leucocitos fueron los limpiadores del sistema inmunológico, más que las células T.

Pero los investigadores fueron capaces de matar al cáncer tanto in vitro como en soluciones purificadas inyectadas con leucocitos. De hecho, una sola inyección de estos leucocitos que combaten cáncer provocharon de inmunidad de largo plazo. "Ratones con regresión completa saludable y libre de tumores al tiempo de publicación (mayo de 2006), 10 meses después del experimento. Los investigadores presentaron sus resultados en la revista internacional Proceedings of the National Academies of Science.

Se requiere investigación continuada para hallar las raíces genéticas de esta resistencia, elusiva de hallazgos debido a que parece estar localizada en diversos cromosomas, que dependen del ratón en particular del que se trate. Pero los hallazgos son tan bien comprendidos que han inspirado la investigación en células humanas. "Estudios tempranos mostraron que algunos individuos son más resistentes de lo que esperábamos, por lo que se espera que la resistencia humana transferrede sea mucho mayor", concluyó el doctor Cui.

Referencias

Cáncer de pulmón, primera causa de muerte en el mundo
Tabaquismo, principal factor de riesgo

VIVIR
O
FUMAR

Ricardo Urbano Lemus

Reportero de Converus

36 CONVERUS Noviembre 2006
Alrededor de cinco millones de personas al año, mueren en todo el mundo debido al cáncer de pulmón (CP). Aunque en México las cifras de los registros patológicos neoplásicos (de cánceres) ubican al CP como la séptima causa de muerte, la realidad es otra. En una entrevista con el doctor Oscar Arrieta Rodríguez, responsable de la clínica de cáncer de pulmón y tumores de tórax del Instituto Nacional de Canceología (Incán) en la Ciudad de México, explicó por qué este cáncer es la primera causa de muerte en el mundo. Asimismo, habló de la importancia del diagnóstico temprano, los factores de riesgo y los tratamientos, sin embargo, dejó claro que la mejor forma de evitar la enfermedad es dejar de fumar.

PRIMERA CAUSA DE MUERTE EN EL MUNDO

Hoy en día, fumar es una de las acciones más comunes en la sociedad, hombres y mujeres de cualquier condición social consumen cigarros. El 90 por ciento de los casos de CP son provocados por el tabaquismo. Según cifras de los Estados Unidos, el CP ocupa el 30 por ciento de las causas de muerte en el mundo. En el caso de México, también es la primera causa de mortalidad aproximadamente con el 11 por ciento (según informes del Instituto Nacional de Salud Pública, tan sólo durante el 2005 murieron seis mil 678 personas en todo el país por esta enfermedad). Las cifras no lo proyectan debido a que muchos pacientes con CP fallecen sin ser diagnosticados; algunos médicos no dan esperanza de vida a los pacientes y no los refieren a los centros oncológicos, la falta de información acerca del cigarrillo y la poca divulgación de los centros profesionales contra el tabaquismo, para

¿**QUÉ ES EL CÁNCER DE PULMÓN?**

El cáncer de pulmón es un tumor que se origina en la pared de los bronquios o en el tejido pulmonar, y es causado por la presencia de múltiples carcinógenos y la irritación constante del humo del tabaco.

¿**QUÉ FUMA REALMENTE?**

En un principio crece lentamente, con ausencia o síntomas mínimos, después crece rápidamente, y se disemina al resto del organismo, principalmente a los ganglios linfáticos, huesos, el resto del pulmón y cerebro (metástasis).

Componentes del cigarrillo

- Aminoplastibeno
- Arésilino
- Benzo (a) antraceno
- Benzo (b) flúoranteno
- Benzo (c) heptanteno
- Benzo (f) fluorenteno
- Cenório
- Dibenzo (a c) antráceno
- Dibenzo (a e) fluoranteno
- Dibenzo (a h) acridina
- Dibenzo (a p) acridona
- Dibenzo (c g) carbazolono
- N-(Dibutil)nitrosamina
- 2,3-Dimetilcriseno
- Indesol (1,3,2-d) pireno
- S - metilcriseno
- S - metilfluoranteno
- Ofi - nattilamina
- Compuestos de alquilo
- N - nitrosodimetilamina
- N - nitrosodiethylamine
- N - nitrosohexilamina
- N - nitrosobenzamina
- N - nitrosopiperidina
- Pulfonio - 219

1. ¡Ah! por cierto, también provoca cáncer de pulmón, la primera causa de mortalidad en el mundo.

2. El cigarro
dejar de fumar, son los principales factores, explicó el doctor Arrieta.

Clasificación de cáncer de pulmón

El CP se clasifica por el tipo de célula que produce el tumor. El 80 por ciento de ellos son de células no pequeñas y el resto de células pequeñas. El cáncer de pulmón de células pequeñas: recibe este nombre por el tamaño de las células vistas a microscopio. Todavía se desconocen las células que las generan, posiblemente son células neuroendocrinas del pulmón. Se relaciona con el hábito de fumar y se estima que alrededor del 20 por ciento de todos los cánceres son de células pequeñas. Estas se multiplican rápidamente y se pueden formar grandes tumores; además su capacidad de extenderse a otros órganos es mayor. El cáncer de pulmón de células no pequeñas se extiende más lentamente que el de células pequeñas, y se da en un 80 por ciento de los casos.

Solo un cigarrillo...

El principal factor de riesgo para desarrollar CP es el tabaquismo, en relación con el tiempo y la frecuencia con que fuma, ejemplo: si usted fuma constantemente, tiene 22 veces más posibilidades de desarrollar CP, que una persona que no lo hace. Las personas que conviven con usted, se convierten en fumadores pasivos y tienen un 10 por ciento de probabilidad. Si tiene o tuvo un familiar directo con CP, usted duplicará las posibilidades de desarrollar esta neoplasia. Dejar de fumar disminuye el riesgo de CP, sin embargo, los pulmones necesitan un mínimo de 15 años para poder liberarse casi totalmente de los componentes del cigarro, explicó el doctor Arrieta.

Otros factores de riesgo

Otro generador de este tipo de cáncer es la inhalación de sustancias que se encuentran en el lugar del trabajo. Esto es responsable del 10 al 15 por ciento de CP en los varones y el cinco por ciento en las mujeres. Entre ellas podemos mencionar la exposición al humo de leña y personas que trabajan con asbesto, como los materiales de construcción u otros productos. También un grupo de riesgo laboral son los mineros, quienes trabajan con materiales que pueden dañar sus pulmones al ser inhalados. Tales sustancias son minerales radiactivos como el uranio, y los trabajadores expuestos a productos químicos tales como el arsénico, el cloruro de vinilo, los cromatos de níquel, los productos derivados del carbón, el gas de mostaza y los éteres clorometílicos. Las personas que trabajan en estas condiciones deben tener mucho cuidado de evitar la exposición a dichos agentes.

Otro tipo de factores son aquellos que han producido algún daño en el pulmón

Métodos de Diagnóstico de CP

Rayos X de tórax. Es el estudio que muestra en una sola imagen todos los órganos del tórax y proporciona una buena información general.

Tomografía convencional de tórax. Es un estudio dinámico de rayos X, en el cual se toman imágenes de todos los órganos desde varios ángulos alrededor del paciente.

Tomografía multicorte (de alta resolución). Toman las imágenes mucho más rápido, de tal manera que los movimientos normales del tórax y la respiración no afectan la claridad de las mismas. Puede realizar cortes más delgados (0.5 mm), por lo cual, puede detectar lesiones más pequeñas y de forma más temprana. Revisa reconstrucciones tridimensionales de los órganos.

Broncoscopia convencional. Es un sistema de visión en tiempo real, muy delgado (hecho generalmente de fibra óptica). Se introduce en el árbol traqueobronquial, de forma estéril y bajo anestesia, el cual permite examinar la vía aérea (traquea, bronquios) bajo visión directa; es capaz de tomar muestras de tejido (biopsias) y remover cuerpos extraños o secreciones.

Broncoscopia con autofluorescencia. La autofluorescencia con luz azul puede resaltar los tejidos anormales que se encuentran en los bronquios.

Ultrasonido y tomografía endobronquial. Estos métodos de estudio son muy novedosos, consisten en la obtención de imágenes de ultrasonido y tomografía desde los bronquios, en tiempo real, con una disminución de la cantidad de radiación utilizada.

Tomografía computada por emisión de positrones (PET-TC). Este estudio combina tomografía y medicina nuclear. Se utilizan elementos visibles en la tomografía y que son captados fuertemente por los tumores. Con las imágenes obtenidas se pueden realizar reconstrucciones tridimensionales que sirven para estadificar de las enfermedades cancerígenas.

Patología. Son los métodos de estudio confirmatorios. Se apican en las muestras de tejido tomadas y consiste en diferentes técnicas de tinción y observación en el microscopio, marcadores tumorales. Es de gran utilidad para determinar el tipo de cáncer y, por supuesto, orientar el tratamiento a seguir.
y que predisponen a padecer un cáncer, como haber sufrido tuberculosis, silicosis o beriloisía (enfermedad crónica del aparato respiratorio). Y también el exceso o déficit de vitamina A, favorece el crecimiento de células cancerígenas. Finalmente los factores genéticos, no significa una herencia, sino un antecedente que duplica las posibilidades de desarrollar CP.

SÍNTOMAS
Los síntomas de CP no suelen aparecer en los primeros estadios sino que surgen cuando ya se ha extendido demasiado como para aumentar las probabilidades de curación. De hecho, desde que se produce la primera célula maligna hasta que una persona consulta por primera vez al médico ante los síntomas de la enfermedad, pueden pasar entre diez y veinte años.

Entre los síntomas más frecuentes están: tos insustenible, dolor en el pecho que aumenta al respirar, pérdida de peso y apetito, falta de aliento, bronquitis y neumonía frecuentes, respiración jadeante o con sibilidos, esputos con sangre o coloración rojiza (flemas), afonía o “gallos” en la voz de forma persistente.

Otros síntomas que puede manifestar el paciente y que se deben a la extensión del cáncer en otras zonas del cuerpo son: dolor en los huesos, coloración amarillenta de la piel y de los ojos (ictericia), infecciones en zonas ganglionares, como en el cuello o axilas, mareos, dolor de cabeza, debilidad o adormecimiento de algún miembro debido a una afectación del cerebro.

DIAGNÓSTICO TEMPRANO
A partir de la sospecha clínica el médico realiza una placa de tórax, sin embargo, muchas de ellas pueden ser negativas, el doctor Arrieta considera que la mejor forma de diagnosticar el desarrollo de CP es en un individuo es a través de una tomografía de alta resolución. Esta prueba puede detectar el CP en individuos fumadores de alto riesgo, con o sin síntomas, en estadios muy tempranos, con altas probabilidades de curación y mejor calidad de sobrevivencia, sin embargo, la tomografía no es una prueba de rutina, y los médicos refieren a los pacientes a esta prueba, cuando están presentes los síntomas. En México solo el cinco por ciento de los casos de CP son detectados en etapa temprana.

EVOLUCIÓN Y TRATAMIENTO
La cirugía, la quimioterapia (medicamentos que matan las células cancerosas, tomados por vía oral o inyectados en el cuerpo) y la radioterapia (rayos x de alta potencia) son los principales tratamientos para el CP. La aplicación de cada uno de estos o su combinación depende de la etapa en la que se encuentre la enfermedad y el tipo de cáncer al que pertenece.

El cáncer pulmonar de células pequeñas se disemina rápidamente a través del cuerpo, el tratamiento tiene que incluir la quimioterapia y se puede combinar con radioterapia. La cirugía rara vez se usa para tratar este tipo de cáncer y sólo se considera, si se trata de un cáncer pulmonar de células pequeñas limitado, con únicamente un tumor que no se ha diseminado. Después de la cirugía, se necesitará la radio y la quimioterapia.

Para el cáncer pulmonar de células no pequeñas, la cirugía a menudo es la primera línea de tratamiento en etapa I y II y algunos pacientes con tumores en etapa III. La cirugía puede curar la enfermedad. La quimioterapia sola con frecuencia se utiliza cuando el cáncer se ha diseminado (etapa IV). Se ha demostrado que esta terapia prolonga y mejora la calidad de vida en algunos pacientes en esta etapa.

RECURSOS, INVESTIGACIÓN Y VOLUNTAD
Como el Instituto Nacional de Cancerología (Incan), en México diversos centros oncológicos están capacitados para diagnosticar y tratar a pacientes con CP. También existen, aunque con poca difusión, distintas clínicas contra el tabaquismo, las cuales ayudan a que las personas dejen de fumar a través de psicoterapia y algunos medicamentos, aunque el primer paso se da a partir de la voluntad del individuo.

El doctor Oscar Arrieta, desarrolla diversas líneas de investigación en el INCAN, entre las que se encuentran: algunos métodos de diagnóstico a través de biología molecular, para la detección temprana de CP. Metodologías para evitar que el tumor se vuelva resistente a la quimioterapia, búsqueda de virus como factor de riesgo, etc.

Sin embargo, diagnosticar de forma temprana, investigar y contar con infraestructura médica, no cambia la realidad de que millones de personas estén enfermas de CP, el doctor considera que la mejor forma de invertir las estadísticas es dejar de fumar. ¿Recuerda la oferta del cigarrillo al principio de este reportaje? Existen muchos hombres, mujeres y niños, que padecen de algún tipo de cáncer, por herencia o por alguna otra circunstancia ajena a ellos, le aseguro que ninguno de ellos eligió enfermarse. En el caso de CP, ésta sí es una oferta, y usted puede elegir... vivir o fumar.

REFERENCIAS
<http://www.mcln.edu.mx/default.htm>
<http://emedicineplus.gov/spanish/>
<http://www.ahchospital.com/dominio/ahchospital/CancPulm.msf>
<http://www.elmuendo.es/elmundosalud/especiales/cancer/pulmon.html>
<http://www.premsalatina.com.mx>

CENTROS PROFESIONALES PARA DEJAR DE FUMAR

Clínica del Tabaquismo
Instituto Nacional de Cancerología
Dirección: Av. San Fernando No. 22 Tlalpan, México
Tel. 5628-04-95 Horario: 8:30 a 14:00 horas.

Clínica Contra el Tabaquismo
Facultad de Medicina UNAM
Departamento de Farmacología
Edificio nuevo de Investigación
Sto. piso
Tel. 56 23 21 02
Virus del Papiloma Humano y Cáncer Cervicouterino

Rosalba Namihira*

* Maestra en Filosofía de la Ciencia, directora de Gaceta Biomédicas, órgano informativo del Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México. D. e.: <namihira@biomédicas.unam.mx>.
n nivel mundial, el cáncer cervicouterino (Cacu) es la segunda causa de muerte por tumores malignos en la mujer y pese a la posibilidad de ser detectado antes de llegar a ser invasivo, la Organización Mundial de la Salud (OMS) reporta que con 240 mil casos fatales, constituye la segunda causa de mortalidad femenina por cáncer en todo el mundo. El 80 por ciento de las mujeres que lo padecen viven en los países en vías de desarrollo y cada año se presentan alrededor de 490 mil casos nuevos. Durante 2002, se registraron en México 12 mil 512 casos nuevos de Cacu, equivalentes al 16 por ciento de todos los cánceres en este grupo de población, provocando la muerte del 46 por ciento de las mujeres que lo padecieron: Diariamente, 12 mujeres mueren por cáncer cervicouterino en nuestro país.

El 99.8 por ciento de los casos de Cacu se debe a tipos específicos de un virus, cuyo genoma está compuesto por una doble cadena de ADN, denominado del papiloma humano (VPH). Se calcula que el 70 por ciento de los casos de Cacu son causados por los tipos 16 (50 por ciento) y 18 (20 por ciento). La doctora Marcela Lizano, de la Unidad de Investigación Biomédica en Cáncer (UIBC), establecida entre el Instituto Nacional de Cancerología (INCan) y el Instituto de Investigaciones Biomédicas (IIBAM) de la UNAM, apunta que esta es la asociación epidemiológica más fuerte que se ha encontrado para cualquier tipo de virus como agente etiológico de cáncer.

El VPH se transmite por vía sexual y no existen barreras 100 por ciento efectivas para evitarlo; el uso del condón disminuye el riesgo de contagio, pero no lo elimina, debido a que no cubre todas las áreas de la región genital. El Instituto Nacional del Cáncer en Estados Unidos señala que se desconoce el grado de protección de los condones. De acuerdo con la OMS, dos terceras partes de las personas que tienen contacto sexual con una persona infectada desarrollarán una infección por el VPH en 3 meses. En el 2001, la Organización Mundial de la Salud calculó que alrededor de 630 millones de personas en todo el mundo (entre 9 y 13 por ciento de la población) estaban infectadas con el virus, el cual, además de infectar el cérvix, puede contagiar también a otras zonas del cuerpo, como el ano, el pene y la garganta, en donde también puede ocasionar cáncer. De acuerdo con Gabriel Tona y Kuanhuycuana Luna-Ortíz, la papilomatosis respiratoria recurrente (PRR) es la neoplasia de laringe más común (de 3 a 5 casos por cada 100 mil habitantes), y puede presentarse en niños y adultos, mostrando mucha agresividad en menores de tres años. Los tipos de VPH que prevalecen en este padecimiento son el 6 y el 11, y aunque el mecanismo de transmisión continúa en debate, se sospecha de la transmisión vertical de madre a hijo durante el parto, aunque algunos bebés nacidos mediante cesárea también han desarrollado PRR. Para los pacientes que inicien PRR en edad adulta, se ha sugerido la asociación de prácticas sexuales orales como un riesgo alto de adquirir la enfermedad. En su artículo “Papilomatosis Respiratoria Recurrente”, publicado en la Gaceta Biomédicas de agosto, los investigadores señalan que ésta es una enfermedad que dista de ser curable.
El resultado usual de la infección por VPH de bajo riesgo es una verruga o papiloma. Las verrugas de la piel, explica la doctora Lizano, pueden ser verrugas planas (superficiales) o verrugas plantares (más profundas). Las verrugas genitales, o condilomas, se transmiten por contacto sexual, el 90 por ciento de estas son causadas por los tipos virales 6 y 11. Los virus genitales tanto oncogénicos, como no oncogénicos pueden causar una lesión escamosa intraepitelial de bajo grado (LSIL, por sus siglas en inglés), pero solo los VPH oncogénicos o de alto riesgo llegan a producir un cáncer invasor.

La mayoría de las mujeres que desarrollan Cacu tienen entre 40 y 50 años de edad, pero cada vez es más común la presencia del virus en mujeres jóvenes de entre 20 y 30 años. Se sabe que más del 70 por ciento de las adolescentes sexualmente activas y mujeres jóvenes adquieren una infección por VPH, aunque la mayoría de manera transitoria. La doctora Lizano explica que la presencia de una infección por VPH en epitelios sanos aumenta el riesgo del desarrollo ulterior de una lesión intraepitelial cervical (LSIL, por sus siglas en inglés). Diversos estudios reportan que de las infectadas, sólo cerca del 25 por ciento desarrolla una lesión intraepitelial de bajo grado, y de estas LSIL, entre un 20 y un 40 por ciento progresa a lesiones intraepiteliales de alto grado (HSIL); lo anterior significa que cerca del 90 por ciento de las mujeres infectadas no mostrará evidencia alguna del tipo viral adquirida después de 12 a 36 meses. En las mujeres con una deficiencia inmune, heredada o inducida farmacológicamente, existe una fuerte tendencia para que la infección persista y se malignice, en caso de infección con VPH de alto riesgo oncogénico. "Si el virus permanece en forma latente, una mujer que parece haber tenido una regresión de la infección durante el seguimiento, estaría aún en riesgo de desarrollar alguna lesión asociada al VPH".

UN POCO DE HISTORIA
El virus del papiloma, VPH, pertenece a la familia Papillomaviridae. Estos virus están ampliamente distribuidos en la naturaleza e infectan específicamente el epitelio escamoso de más de 20 especies diferentes de mamíferos, así como aves y reptiles (34, 35).

En su artículo "Cáncer Cervicouterino y el Virus del Papiloma Humano: la historia que no termina", publicado en la Revista Cancerología, del Incan, Alejandro López Saavedra y Marcela Lizano, de la UABC UNAM-Incan, señalan que en 1917 se utilizó un extracto de condiloma de pene, obtenido de un joven estudiante de medicina que no presentaba síntomas de enfermedad venérea alguna, para ser inoculado en el antebrazo del experimentador y el de su asistente, así como en la mucosa genital de una "virgo intacta". Dos meses y medio después del experimento, la mujer desarrolló condiloma genital y en los brazos de los varones aparecieron verrugas. Estos y otros experimentos concluyeron que las verrugas genitales eran causadas por un agente transmisible.

Dicho estudio señala también que el doctor Harald zur Hausen fue el primero en demostrar que las verrugas genitales y los tejidos de Cacu, contienen genomas del Virus del Papiloma Humano.
EN DONDE ESTA EL RIESGO

Los investigadores del Incan, señalan que el riesgo de contraer VPH genital está influenciado por la actividad sexual, por lo que el Cacu sigue un patrón típico de enfermedades transmitidas sexualmente.

Hay una fuerte asociación entre el número de parejas que han tenido tanto la mujer, como su compañero a lo largo de su vida y la adquisición del VPH. La actividad sexual a temprana edad o un historial de otras enfermedades transmitidas sexualmente aumentan también el riesgo de contraer VPH, así como la presencia de verrugas genitales, o resultados anormales en la prueba del papanicolaou. Es de alto riesgo el que la pareja sexual haya padecido Cacu o cáncer de pene.

En su artículo, los investigadores apuntan que la infección por VPH es más común en mujeres jóvenes sexualmente activas, de 18 a 30 años de edad, pero el Cacu lo es después de los 35 años, lo que sugiere que la infección ocurre a temprana edad y la progresión a cáncer es lenta.

Cuando la infección persiste, puede deberse a la presencia de varios tipos a la vez o a un tipo viral de alto riesgo, lo cual es factor determinante en el desarrollo de cáncer. La persistencia puede inducir cambios genéticos secundarios, dado que las proteínas virales interflere con los puntos de control del ciclo celular e inducen inmortalización de las células de la epidermis, llamadas queratinoctitos.

El uso prolongado de anticonceptivos orales aumenta el riesgo para Cacu, ya que el genoma viral, contiene elementos de respuesta a glucocorticoides, inducibles por hormonas esteroides como la progesterona (componente activo de los anticonceptivos orales) y la demantelatasa.

La infección por otros virus, como el del herpes simple (HSV) tipo 2, el citomegalovirus (CMV), o el herpes virus humano tipos 6 y 7 (HHV-6), facilitan la infección de VPH y pueden coexistir varios de ellos.

La cantidad de virus tiene que ver con la severidad de la enfermedad, existiendo algunos tipos de virus, como el VPH 16, que pueden alcanzar cargas mucho más altas.

ARMAS PARA PREVENIR EL CACU

La mayoría de las lesiones leves o moderadas revierten espontáneamente en individuos con un sistema inmune competente. Un aspecto importante para la prevención del Cacu es evitar el contagio y detectar oportunamente cualquier infección. En el primer caso, los especialistas recomiendan la práctica del sexo protegido, tomando en cuenta que no basta el condón, y que el VPH puede adquirirse a través de otras prácticas sexuales, como el sexo anal u oral. Es recomendable también evitar los riesgos derivados de tener relaciones con varias parejas o a practicarlo en edades muy tempranas. Es importante destacar que este tipo de precauciones aplica tanto para hombres como para mujeres, ya que si se pudiera controlar la infección de los varones, podría verse disminuido en las mujeres. Aún cuando los hombres rara vez enferman de cáncer por esta causa, deben estar conscientes del daño que pueden ocasionar.

La prueba del papanicolaoua sigue siendo muy importante para la detección oportuna, pero —comenta la doctora Lizano— es indispensable, sobre todo en países en vías de desarrollo, lograr una cobertura eficiente de la población femenina, ya que, por ejemplo, en México, el 70 por ciento de las pacientes con diagnóstico de Cacu que llegan al Instituto Nacional de Cancerología, nunca se ha realizado un papanicolaoua. Según el Population Reference Bureau y la Alianza para la Prevención del Cáncer Cervicouterino, las causas de este hecho van desde la ignorancia sobre la existencia de la enfermedad o de pruebas útiles para detectarla, hasta la inaccesibilidad a los sistemas de salud o el mal servicio en los mismos, pasando por los mitos locales sobre el tema y la oposición de los hombres a que sus mujeres sean revisadas por el ginecólogo.

En caso necesario, el papanicolaoua puede complementarse con la colposcopia y la biopsia.

VACUNAS

Diversos grupos alrededor del mundo se han esforzado por obtener una vacuna contra el VPH. Para este fin, la ingeniería genética puede expresar algunos de los genes del VPH 16 y 18 principalmente para producir partículas que semejen a los virus (virus like particles) (16 y 18) y así activar el sistema inmune. De esta manera, cuando el sistema enfrente al virus completo, puede montar una respuesta inmune adecuada. La Food and Drug Administration (FDA), ha aprobado la vacuna tetravalente (Gardasil®), que protege de VPH 16,18,6,11. Una más, que protege contra VPH 16 y 18 (Cervarix™), que está en espera de ser aprobada. La Organización Panamericana de la Salud (OPS), inició el pasado mes de agosto un proceso interno de preparación para la introducción de dicha vacuna, la cual fue prevista para mediados de este 2006, en los mercados de los países miembro. Recientemente, la Secretaría de Salud de México aprobó la venta de la vacuna tetravalente contra VPH. Esta vacuna, iniciada hace 10 años, consiste en VPH conteniendo la proteína L1 de los tipos virales 6, 11, 16 y 18, la cual ha demostrado capacidad para prevenir infecciones persistentes de VPH 16 y 18, así como para proteger de infecciones de virus de bajo riesgo (6 y 11), asociados al 90 por ciento de las verrugas genitales.

La doctora Lizano señala que esta vacuna será de mayor beneficio si se administra antes del inicio de la vida sexual, por lo que su uso se recomienda a partir de los nueve años tanto en mujeres como en hombres. Asimismo, señaló que falta por definir si la vacuna pudiera resultar benéfica para mujeres que ya tienen una infección por VPH o una lesión temprana en el cérvix.

Al igual que en el caso del papanicolaoua, la doctora Lizano subraya la importancia de la cobertura para la aplicación de este
canción en México

recurso a fin de que pueda protegerse a la población más vulnerable: los estratos socioeconómicos medio bajo y bajo, considerando que el costo de la vacuna es alto. También advierte sobre la necesidad de crear conciencia social a través de modelos adecuados de difusión, sobre la importancia de la vacunación, ya que para lograr la protección se requieren tres dosis, de las que deberá estar pendiente la paciente, así como también de la conveniencia de incluir a los varones para la suministración de la misma, pues si bien éstos rara vez sufren de las secuelas por la infección de VPH, es un vector importante para su contagio. Sobre este último punto, la Organización Panamericana de la Salud ha señalado que si las vacunas profiláticas contra el VPH disponibles se administran a mujeres de 9 a 12 años, la población destinataria para la inmunización en América Latina y el Caribe sería aproximadamente de 2,18 millones de niñas (estimaciones para 2007), pero que si se considera tanto para las niñas como para los niños, la población destinataria sería del orden de 44.5 millones.

Es importante señalar en este capítulo que un reporte de la OPS en junio de 2006, precisó que el seguimiento de las pacientes había sido de alrededor de 60 meses para la vacuna tetravalente y 47 meses para la bivalent, observándose un 96 por ciento de eficacia contra infección persistente y 100 por ciento contra cualquier lesión cervicouterina o genital causadas por los tipos incluidos en las mismas, por lo que la protección para períodos más largos aún se desconoce.

Por otra parte, no se han concluido pruebas clínicas en varones que muestren su efectividad. Aunado a esto, debe considerarse la necesidad de contar con un consentimiento informado por parte de los padsres para la vacunación de los menores, en el que están involucrados diversos problemas de tipo moral y ético. Inmaculada de Melo-Martín, de la Universidad de Cornell, en Estados Unidos, apunta que algunos padres consideran que informar a los menores sobre el propósito de la vacuna podría fomentar el inicio temprano de prácticas sexuales, y que solo un 23 por ciento de los tutores estarían a favor de la vacunación, según se desprende de algunos datos.

Esta autora llama la atención también sobre la necesidad de no relegar otros programas de salud para cubrir los gastos de la vacunación contra el VPH ni de bajar la guardia en las campañas de detección temprana de VPH, ya que, como se apuntó anteriormente, las vacunas desarrolladas hasta ahora solo protegen de máximo cuatro tipos virales, pero no del resto, relacionados con las verrugas genitales y cáncer.

Es necesario indicar también que las vacunas no son terapéuticas, por lo que simplemente deforman infección en las personas que ya tienen una infección por VPH o están en riesgo por sus secuelas.

Repercusiones Psicosociales de un Diagnóstico Positivo para VPH
Una investigación del Servicio de Urología del Hospital Santiago Ramón y Cajal de Madrid, España, aborda los aspectos psicosociales de la infección por VPH, señalando que el diagnóstico de esta infección produce en la persona afectada y en su pareja, daño emocional que en ocasiones puede ser mayor que el físico: miedo, angustia, depresión, ansiedad, rechazo, sentimiento de culpa, alteraciones en la estabilidad de la pareja, etcétera, lo que puede gravitar de forma muy negativa sobre el enfermo.

Los Tratamientos
De acuerdo con el doctor Alfonso Dueñas, director de Investigación del Incan, la mayoría de las enfermedades de Cacu son diagnosticadas en estadios avanzados y uno de los recursos más utilizados en estos casos es la radioterapia. En su artículo titulado "Radiosensibilizantes en Cáncer Cervicouterino", publicado también en la revista Cancerología, señala, junto con su grupo, que cuando la enfermedad invasiva se detecta en etapas tempranas, puede realizarse una cirugía (extracción en forma de cono de la zona dañada) o hysterectomía total, así como procedimientos radiológicos, incluyendo la extirpación de los ganglios pélvicos (linfadenectomía), ya que aproximadamente el 8 por ciento de las pacientes presentan ganglios pélvicos positivos. Cuando la mujer desea preservar la función reproductiva, la taquielectomía radical se ha convertido en una opción para estas pacientes.

En este tipo de tratamientos y dependiendo de factores de riesgo intermedios o altos, puede utilizarse radioterapia o quimioradiación postoperatoria.

Cuando la enfermedad se encuentra localmente avanzada, la quimio-radiación con cisplatinio es el tratamiento estándar, ya que de acuerdo con diversos estudios mejora las probabilidades de curación.

El investigador y su grupo concluyen que es necesario desarrollar nuevas modalidades de tratamiento, como son el uso simultáneo de radioterapia con fármacos dirigidos contra blancos moleculares, que han demostrado su capacidad radiosensibilizante.

En este mismo campo de los medicamentos, la doctora Myrna Candelaria y sus colaboradores, subrayan la importancia de conocer el perfil genómico de los pacientes (polimorfismos), de manera previa al inicio de los tratamientos, a fin de seleccionarlos adecuadamente para que resulten eficaces y con menor riesgo de toxicidad severa.

A este respecto, señala en su artículo "Importancia de la determinación de variantes genéticas que influyen en la eficacia y toxicidad farmacológica en oncología", de la revista ya citada, que "en Estados Unidos, más de dos millones de pacientes hospitaleados tienen eventos adversos serios que condicionan más de cien mil muertes" y que en países como el Reino Unido, el manejo de complicaciones secundarias a quimioterapia incrementó los costos hospitalarios en 2 por ciento y los relacionados con el tratamiento hasta en un 15 por ciento.

Precisamente, como se buelle la respuesta a los agentes de quimioterapia se determina principalmente por el genoma del tumor, la toxicidad depende en gran parte del genoma en los tejidos sanos, por lo que es necesario desarrollar investigación dirigida a la búsqueda de polimorfismos aisladados que permitan comprender las variaciones genéticas en vías farmacológicas para prescribir una dosis óptima con menor riesgo de toxicidad y probablemente con mayor tasa de respuesta."
9° Congreso Nacional de Ingeniería Electromecánica y de Sistemas

13 AL 17 DE NOVIEMBRE 2006

Dirigido a: Investigadores, docentes y alumnos de las áreas de ingeniería

TEMÁTICA:

ELÉCTRICA:

◊ Sistemas Eléctricos de Potencia
◊ Control de Sistemas de Potencia y Máquinas Eléctricas

MECÁNICA:

◊ Transferencia de Calor y Masa
◊ Plantas Térmicas, Turbinas de Vapor y Gas
◊ Compresores, Hornos y Calderas
◊ Motores de Combustión Interna
◊ Vibraciones y Rotodinámica
◊ Refrigeración y Aire Acondicionado
◊ Mecatrónica y Robótica Industrial
◊ Biomecánica y Biomodelado
◊ Mecánica de la Fractura
◊ Tribología
◊ Procesos de Fabricación, Sistemas de Manufactura
◊ Aerodinámica y Aviónica
◊ Estructuras
◊ Ingeniería de Materiales
◊ Simulación

SISTEMAS:

◊ Sistemas Complejos
◊ Dinámica de Sistemas de Socio Técnicos de Calidad
◊ Metodologías Sistémicas
◊ Modelos y Evaluación de Sistemas

ELECTRÓNICA:

◊ Fotónica
◊ Optoelectrónica
◊ Procesamiento de Señales e Imágenes
◊ Compatibilidad Electromagnética
◊ Instrumentación Electrónica
◊ Sistemas de Control
◊ Nanoestructuras
◊ Electrónica de Semiconductores
◊ Diseño VLSI Analógico y Digital
◊ Aplicaciones MEMS

TELECOMUNICACIONES:

◊ Procesamiento de Señales
◊ Reconocimiento de Patrones
◊ Filtrado Adaptativo
◊ Procesamiento de imágenes y Voz
◊ Ondas en Medios Complejos
◊ Comunicaciones Inalámbricas
◊ Comunicaciones Satelitales
◊ Redes de Datos
◊ Sistemas Distribuidos

EDUCACIÓN TECNOLÓGICA:

◊ Tecnología Educativa
◊ Educación de la Ingeniería

Actividades: Exposición, Conferencias, Ponencias, entre otras actividades

Cuotas de Recuperación: Estudiantes $ 300, Profesores $ 600 y Externos $ 1,200

20% de descuento hasta el 7 de Agosto

Fechas Límites:

Recepción de Ponencias en extenso 8 de septiembre
Notificación de Ponencias aceptadas 22 de septiembre
Recepción de versión final 01 de octubre

Informes, recepción de Ponencias e inscripciones:

Leticia Trujillo Mutio
SEP, ESIME
Av. Hermosillo
C.P. 07730, MÉXICO
Teléfono: 57-29-50-00 ext. 54987

Sede: Unidad Politécnica para el Desarrollo y la Competitividad Empresarial,
Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Col.
Lindavista, C.P. 07730
Cáncer, el asesino silencioso de la mujer mexicana

Maricela Cruz Martínez*

* Reportera de Conversus
“Mii nombre es Renata, tengo 22 años, estudio el octavo cuatrimestre de la universidad, trabajo en una cafetería que está cerca de la casa de Patricio, mi novio a quien amo mucho. El motivo de escribir esto es porque confieso que desde los 18 años llevo una vida sexualmente activa; sin embargo, me he informado sobre la mayoría de las enfermedades de transmisión sexual que existen y que puedo contraer. Sé que la enfermedad del cáncer cervicouterino (CACU) inicia con el virus del papiloma humano, lo que realmente me preocupa es que en México mueren aproximadamente 4 mil mujeres al año debido al CACU; como me sorprendieron las cifras, hablé con Patricio sobre la responsabilidad que debemos tener. Al investigar sobre los tipos de cáncer que nos atacan a las mujeres, observé que después del cáncer de cérvix, el cáncer de mama, es el más frecuente al grado que en señoras de 40 a 55 años de edad, es la principal causa de muerte femenina. Consternada por esta situación decidí platicar con mi mamá sobre estos temas ya que ella tiene 48 años y debe practicarse una mamografía cada año para descartar la presencia del maligno cáncer de mama, así como un papanicolaou para prevenir el cáncer en la matriz. Es muy importante prestar atención a este tipo de enfermedades, ya que si se detectan a tiempo son curables, por ello pienso que toda mujer sin miedo, temores y prejuicios, debe acudir a examinarse.”

Como bien lo menciona Renata, la no prevención y el poco cuidado de la salud ha llevado al cáncer a ocupar los primeros lugares en mortalidad a nivel mundial, en particular el cáncer mamario y el cervicouterino son las principales en las mujeres debido a que la mayoría de ellas no acude a realizarse los estudios pertinentes.

Para ampliar la información Conversus entrevistó a especialistas del Hospital Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social (IMSS); respecto al cáncer de mama al doctor Juan Alejandro Silva, jefe del Servicio de Oncología Médica y sobre el tema de cáncer cervicouterino, al doctor Horacio Astudillo de la Vega, titular del Laboratorio de Oncología Molecular. Ambos explican sobre la prevención y el tratamiento del cáncer.

CÁNCER DE MAMA

Respecto al cáncer de mama el doctor Silva explicó que a nivel internacional una de cada ocho mujeres tiene o va a desarrollar cáncer de mama en el lapso de su vida, es decir, el 12 por ciento de la población femenina va presentar cáncer de mama en algún momento de su vida. Estadísticas nacionales muestran que en México la incidencia empezó a elevarse desde una década antes.

El Hospital de Oncología del Centro Médico Nacional recibe alrededor de 1 200 casos nuevos de cáncer de mama, los cuales pasan por diferentes etapas, según el doctor Silva.

“Cuando un tumor se palpa, debe tener por lo menos un centímetro” Explicó el experto; “lo más importante sería encontrar los tumores antes de que sean palpables, es decir mediante una radiografía, una mastografía. Hay algo que debo destacar, mucha gente tiene miedo a la mastografía porque piensa que da una cantidad de radiación que puede predisponerlas posteriormente a tener cáncer de mama. Eso no es verdad, los mastógrafos actuales son de bajo voltaje y con una alta definición” —enfatizó—.
“La mastografía, permite encontrar a los tumores en una etapa todavía no palpable, que es cuando mejores perspectivas de tratamiento existen.”

La enfermedad se divide en dos grupos: a) temprana, cuando el tumor tiene de tres o cuatro centímetros y b) avanzada, que puede ser local (un tumor que no se haya ido a otro lugar), o bien cuando el tumor ya se ha ido a otros órganos (metástasis).

Las formas de tratamiento que existen para estos tumores son tres: a) cirugía, b) radioterapia y c) el uso de medicamentos, que pueden ser con base en quimioterapia u hormonas.

El uso de una y otra después, depende de la etapa clínica que tenga cada paciente. Se tienen unas guías a nivel internacional sustentadas en múltiples estudios internacionales que avalan cuál es la mejor forma de tratamiento para una paciente en tal situación por lo tanto, con las guías conocemos qué es recomendable, si primero la quimioterapia, la cirugía o bien la radioterapia, explicó el doctor.

En el caso de cáncer de mama las hormonas, presentes en el 50 por ciento de las pacientes antes de su menopausia y en el 70 por ciento de las pacientes después de la menopausia pueden tener receptores positivos y recibir hormonas favorecedoras del crecimiento del tumor, afirmó el oncólogo.

“Un tratamiento hormonal es muy tolerable, con mucho menos efectos secundarios, puede darse incluso por cinco años. Dentro de la evolución de este tratamiento de hormonoterapia podemos decir que el Tamoxifén, bloquea el acoplamiento del estrógeno con el receptor de la célula; durante mucho tiempo fue el tratamiento de elección” comentó.

Sin embargo el especialista explicó que hay nuevos medicamentos llamados inhibidores de aromatasa, consisten en inhabilitar a una enzima llamada aromatasa, necesaria en la formación de los estrógenos (hormonas femeninas) y que interviene en el estímulo del crecimiento tumoral, a diferencia de otro tipo de cánceres, el de mama puede ser influenciado por hormonas femeninas, las cuales posibilitan inducir a las células del tejido a reproducirse, por ello los inhibidores de aromatasa buscan disminuir su producción.

El doctor Silva explicó también que la principal fuente de producción de estrógenos son los ovarios; pero toda vez que una mujer deja de menstruar, otros órganos como las glándulas suprarrenales, hígado y tejido graso, siguen produciéndolos, aunque en menor cantidad. De tal modo que si hay células malignas presentes, es más que suficiente para promover el desarrollo.

Hay que aclarar que los inhibidores de la aromatasa sólo actúan sobre los estrógenos que se forman fuera de los ovarios y por lo tanto la terapia hormonal únicamente es útil en mujeres menopáusicas, mencionó el especialista.

“Estos medicamentos vienen a complementar el efecto del Tamoxifén, actúan impidiendo la formación de estrógenos, bloquean su acoplamiento con los receptores disminuyendo o anulando la formación de estrógenos de las hormonas.

Hay diferentes inhibidores de aromatasa, son básicamente tres: Anastrozol, Letrozol, Exemestane, cada uno de ellos ha desarrollado diferentes estudios para ver si pueden sustituir al Tamoxifén o bien darlo y después alguno de estos inhibidores.

Según el doctor Silva, prácticamente todos los estudios con los diferentes inhibidores de aromatasa han demostrado un tratamiento con dos años de Amoxifén y seguidos tres años de alguno de los inhibidores ya mencionados el paciente tiene menos posibilidad de recaer y el medicamento es bien tolerado. Todo esto, después de que el tumor se retira o sea después de la cirugía.

Cuando la enfermedad está avanzada se presenta la metástasis, que es el traslado de tumores a otros órganos.

En el caso de la mama los sitios más frecuentes a donde se puede ir el tumor son: pulmones, huesos, hígado y cerebro, expuso el doctor Silva.
Si la enfermedad regresa entonces hay varios tratamientos que han mostrado utilidad importante para aumentar la posibilidad del tiempo de mejor calidad de vida, la sobrevida global de estas pacientes. Dentro de estos medicamentos la quimioterapia es el pilar y en algunos de ellos se prescriben tratamientos de hormonoterapia.

Han aparecido medicamentos que tienen un mecanismo diferente son del orden de la terapia molecular, es decir, se han encontrado en células anormales, moléculas que tienen que ver con el mecanismo de duplicación de las células, entonces se están creando medicamentos que actúan específicamente sobre ciertas moléculas, impidiendo la división celular.

Unos actúan como anticuerpos, otros como bloqueadores; el que más utilizamos en la práctica es el Herceptin (Trastuzumab), un anticuerpo que actúa sobre el receptor HER2/NEU, fue el primero que apareció.

En el caso de los tumores de mama ha llegado un nuevo medicamento llamado Avastin (Bevacizumab) medicamento antiangiogénico, es decir, impide que se formen vasos sanguíneos alrededor del tumor para nutrirlo y actúa inhibiendo una sustancia fundamental para que se reproduzcan los vasos sanguíneos alrededor del tumor (factor del crecimiento del endotelio vascular), entonces inhibe esas sustancias y por lo tanto ya no se forman células alrededor.

Tanto la quimioterapia, la hormonoterapia y la terapia molecular, se puede mezclar con los medicamentos que han dado un avance importante, concluyó el experto.

Haciendo referencia a este tipo de cáncer, el doctor Astudillo complementó: “En el caso del cáncer de mama tanto el Herceptin (Trastuzumab) como el Avastin (Bevacizumab) son los medicamento de más importancia como terapias innovadoras en el tratamiento no sólo del cáncer de mama, sino de todos los cánceres. En la actualidad, hay una amplia investigación sobre muchas moléculas de este tipo igualmente prometedoras, las llamadas terapias de blanco dirigido, que actúan específicamente en algún sitio y en ciertas moléculas funcionalmente muy importantes para mantener el tumor, las terapias blanco son como el tratamiento de quimioterapia que actúa de manera general sobre todas las células de reproducción rápida.

CÁNCER CERVICOUTERINO (CACU)

Para profundizar en el cáncer cervicouterino, el doctor Horacio Astudillo mencionó que el cáncer es un crecimiento anormal de células y se le denomina cervicouterino, porque se desarrolla en el cuello de la matriz, actualmente se sabe que el virus del pa-
El papiloma humano (VPH) es el medio principal para provocar cáncer cervical, lo que significa que no puede haber cáncer cervicouterino si no hay presencia de infección por el virus, sin embargo no todas las mujeres infectadas del virus padecen cáncer, afirmó.

Por otra parte, existen más de 100 tipos de virus de papiloma humano en el mundo, alrededor de 35 son los virus que afectan el área genital, éstos se pueden clasificar en dos tipos: a) los oncogénicos, aquellos que provocan cáncer y b) los no oncogénicos que solamente causan lesiones.

Los tipos de virus se clasifican en grupos o tipos, según el riesgo que presentan al desarrollar el cáncer cervicouterino, hay tipos más agresivos como 16, 18, 35, 45 y 58, que frecuentemente se asocian a lesiones de cáncer invasor.

De ese grupo los más frecuentes son 16 y 18 quienes ocasionan el 50 y 20 por ciento de los tumores y cánceres de cuello de la matriz.

Actualmente existe una vacuna llamada Gardasil, desarrollada por los laboratorios Merck Sharp y Dohme; esta vacuna logra evitar el desarrollo de infecciones por los dos tipos virales de alto riesgo oncogénico ya mencionados.

Con este logro se evitara que siga incrementando el número de fallecimientos por cáncer cervicouterino, explicó el experto.

Cuando la mujer presenta este virus en su estudio de papanicolaou, afirma el doctor Astudillo, por lo regular se deja transcurrir un año, esperando que la paciente, elimine al virus por medio de sus defensas, de no ocurrir esto, es necesario que el colposcopista (ver nota 1) la revise y si él lo considera e practica una biopsia, para lograr hacer el diagnostico definitivo y proceder al tratamiento adecuado.

Puntualizó el investigador: “también es importante destacar que por medio de estudios de seguimiento, se ha logrado determinar que alrededor del 50 al 60 por ciento de las mujeres que han iniciado su vida sexual, ya estuvieron expuestas al virus, sin embargo del 80 al 85 por ciento lo eliminan por sí solas gracias a sus anticuerpos y su mecanismo de defensa”.

Esta infección se presenta por lo regular cuando la mujer esta en su actividad sexual mayor, la cual se considera que es entre los 23 y 25 años, en este período cuando más probabilidad hay de encontrar la infección, que disminuye a través de la edad y vuelve a aumentar alrededor de los 40 años, comentó.

Al igual que otras enfermedades, el cáncer cervical es prevenible, para esto existe una medida al alcance de todas las mujeres, es el estudio de papanicolaou. Cualquier mujer puede realizarse en un centro de salud de manera gratuita.

Es importante señalar, mencionó el doctor Astudillo, que una mujer, desde el momento en que aparece una lesión, hasta el momento en que se presenta el cáncer como tal, tarda alrededor de 15 años, lo cual deja un margen de tiempo bastante considerable para la detección, prevención y tratamiento de éste. La prevalencia mayor de cáncer cervicouterino, lo encontramos en la población femenina de entre 30 y 35 años; por esto se convierten en el principal grupo que debe acudir a realizarse un papanicolaou, puntualizó el especialista Astudillo de la Vega.

El transmisor principal del virus es el hombre, debe mencionar que el porcentaje de infección entre el género masculino es del 35 al 42 por ciento mientras que en las mujeres es del 14 por ciento, pero existe variantes como por ejemplo; en el hombre la infección es más rígida, así como se presenta, se elimina; además a él dicho virus no le provoca daño grave, como en la mujer.

Este virus se transmite por medio del contacto sexual, de acuerdo a la actividad sexual que se tenga, la exposición aumenta y existen probabilidades de contraer este virus, explicó el doctor Astudillo.

Al igual que el cáncer de mama en el de cervix, existen tratamientos para todas las pacientes; la cirugía (extracción del cáncer en una operación), radioterapia (uso de rayos x de alta energía u otros rayos de alta energía para eliminar las células cancerosas) y quimioterapia (uso de medicamentos para eliminar las células cancerosas).
El médico puede emplear uno de varios tipos de cirugía disponibles para el carcinoma in situ con el fin de destruir el tejido canceroso, finalizó el doctor Astudillo.

“Actualmente trabajamos en un estudio con una nueva molécula llamada A-007 (Vireximod) que en presentación de gel y aplicación intra-vaginal elimina la infección por cualquier tipo de infección de virus del papiloma humano y destruye la lesión pre-cancerosa que induce el virus. Demostrar el estudio de investigación clínico, la eficacia en el tratamiento de la infección y las lesiones pre-cancerosas del epitelio cervical, será una terapia esperanzadora y muy importante para las pacientes que sufren este mal.

Si a usted le gustaría unirse a Renata y a su mamá siendo responsable de sí misma con su salud, es tiempo de que acuda con el médico; de esta manera, puede evitar los problemas con sólo un estudio anual. Recuerde, más vale prevenir que lamentar.

NOTA:
Colposcopista: médico que utiliza un colposcopio para facilitar la visualización de la superficie del cuello uterino. Un colposcopio es un microscopio de bajo poder que amplifica la superficie del cuello uterino de 10 a 40 veces su tamaño normal y ayuda a identificar áreas de la superficie que muestren anomalías.

Factores de riesgo

<table>
<thead>
<tr>
<th>Cervicouterino</th>
<th>Mamario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°. Infección por el Virus del Papiloma Humano (VPH), es la causa más importante en el desarrollo de este cáncer.</td>
<td>1°. Que un familiar directo hubiera tenido este tipo de cáncer. Aumenta 5 veces más la posibilidad.</td>
</tr>
<tr>
<td>2°. La actividad sexual temprana</td>
<td>2°. Otro factor tiene que ver con la exposición de la mama con hormonas femeninas.</td>
</tr>
<tr>
<td>3°. El tabaquismo aumenta dos veces más la posibilidad de desarrollar cáncer de cervix que las no fumadoras.</td>
<td>3°. No tener hijos o haberlos tenido después de los treinta años de edad.</td>
</tr>
<tr>
<td>4°. Virus de Inmunodeficiencia Humana (Sida), las mujeres infectadas por este virus, son más propensas ya que al tener su sistema inmune dañado, pierde la capacidad de destruir el VPH.</td>
<td>4°. Consumir alimentos ricos en grasa, particularmente de origen animal (carnes rojas). Esto se debe a que la grasa animal, por el colesterol, hacen producir más estrógenos.</td>
</tr>
<tr>
<td>5°. Otras enfermedades de transmisión sexual.</td>
<td>5°. Ingesta de alcohol y la obesidad.</td>
</tr>
</tbody>
</table>
Cáncer de próstata, una enfermedad que ataca en la jubilación

*Primera causa de muerte en hombres mayores de 65 años en México.
*Revisión anual puede detecta un cáncer precoz aún sin los síntomas.

Gustavo Herrera, padre de dos hijos y con operación de va-sectomía desde hace 22 años, acaba de cumplir 50 años de edad, nunca ha tenido problemas al orinar, un proceso cotidiano de interés secundario. Sin embargo, ha notado que algunos de sus contemporáneos ya padecen la obstrucción del flujo urinario, síntoma característico de una hiperplasia prostática benigna, que se manifiesta por una disminución de la fuerza y el tamaño del chorro del líquido; necesidad de desalojar la orina con frecuencia —incluso varias veces por la noche—, así como una sensación final de que aún queda líquido en la vejiga sin poderlo desalojar.

*Periodista científico de Conversus
Sin presentar estos síntomas, no muy convencido de someterse al tacto rectal —una autenticación incomónd por su impacto en la tradición cultural—, Herrera acudió a una revisión periódica de próstata, por sugerencia de su esposa y la facilidad de esta prueba para detectar la posibilidad de un cáncer precoz. En esta etapa, el desarrollo de este padecimiento es controlable.

El resultado de su antígeno prostático específico (PSA prostate-specific antigen), indicó una cantidad mayor de 2 ng/ml —límite normal para una persona de 50 años de edad. El especialista le practicó un tacto rectal y notó un ligero crecimiento de la próstata. Ambos indicativos podrían derivar en dos padecimientos: una hiperplasia prostática benigna —crecimiento de la próstata controlable a través de medicamento y dieta alimenticia— o un cáncer de próstata, principal causa de muerte de hombres mayores de 65 años y uno de los padecimientos que más preocupa en la actualidad a los hombres de más de 50 años de edad en nuestro país.

<table>
<thead>
<tr>
<th>Muertes por cáncer en individuos mayores de 65 años</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Causas</td>
<td>Casos</td>
</tr>
<tr>
<td>Próstata</td>
<td>3935</td>
</tr>
<tr>
<td>Piel</td>
<td>3365</td>
</tr>
<tr>
<td>Vejiga Urinaria</td>
<td>857</td>
</tr>
<tr>
<td>Estómago</td>
<td>792</td>
</tr>
<tr>
<td>Bronquios y pulmón</td>
<td>791</td>
</tr>
</tbody>
</table>

Fuente: Registro Histopatológico de Neoplasias Malignas. ss 2001

PRIMEROS SÍNTOMAS

Entrevistado por Conversus, el doctor Áarón Torres García, urooncólogo del hospital Ángeles del Pedregal, comenta que el cáncer de próstata es una enfermedad asintomática por lo que es recomendable una revisión anual de PSA y tacto rectal en hombres a partir de los 50 años de edad. Ya que cuando los pacientes acuden con el uroólogo para esta revisión, generalmente padecen obstrucción urinaria como: urgencia, flujo miccional disminuido en tamaño y fuerza; frecuencia inusitada que incluso los obliga a levantarse varias veces en la noche y dificultad para orinar; con la sensación de que no alcanza a desalojar toda la orina, es muy probable que haya un crecimiento de la próstata que obstruye el paso del líquido por la uretra. Este crecimiento podría ser canceroso. Algunas personas consideran que la vasectomía puede ser un factor que propicie este crecimiento. Sin embargo, hasta el momento no existen indicios que confirmen esta creencia.

Para confirmar o rechazar la posibilidad de un tumor canceroso y poder ofrecer un diagnóstico —comenta el especialista—, generalmente se realizan al paciente un tacto rectal y un análisis sanguíneo para medir el nivel de antígeno prostático específico (PSA prostate-specific antigen), ambos exámenes son rápidos y confiables. También, cuando el PSA resulta elevado (por ejemplo, 8.6 ng/ml) y durante la exploración rectal se pudo palpar una próstata dura e irregular —normalmente la consistencia de la glándula es similar a la de la nariz— es probable que solamente se trate de una hiperplasia prostática benigna. Para confirmar este diagnóstico existen otros exámenes que pueden aportar mayor información, como la ecografía prostática con la que se puede observar el tamaño de la próstata. El doctor Torres García opina que ante una probabilidad elevada de cáncer, se debe obtener una biopsia del tejido prostático para comprobar si se trata de un tumor canceroso, la extirpación y desarrollo y así poder determinar el tratamiento terapéutico.

CÉLULAS BAJO EL MICROSCOPIO

En el laboratorio, el patólogo corta la muestra de tejido en varias secciones para buscar células de forma irregular subdividiéndose, variaciones de tamaño y forma nuclear, pérdida de características de especialización celular, así como la ausencia de de organización normal del tejido y límites del tumor difusamente definidos. Esta observación puede presentar, también, un
cancer en México

El PSA se produce en la próstata y permite al semen tener la consistencia de coágulo al momento de la eyaculación; posteriormente disuelve la sustancia gelatinosa para permitir el avance de los espermatozoides. El PSA tiene la capacidad de pasar a través de la capa celular basal de la glándula y penetrar al torrente sanguíneo, por esta razón se localiza el PSA en la sangre. Con la edad, la testosterona provoca que la próstata crezca y aumenten los niveles de PSA en la sangre masculina.

Niveles en nanogramos por mililitro de PSA en la sangre
0 a 2 ng/ml es un nivel límite en hombres de 50 años.
2 a 4 ng/ml es un nivel elevado, que algunos laboratorios consideran normal.
10 a 19,9 ng/ml es un nivel elevado
20 ng/ml o más es un nivel surgientemente elevado
*Un nanogramo = un mil millonesimo de gramo

crecimiento de tejido por una excesiva división de células, con su estructura y arreglo celular dentro del tejido, una hiperplasia o crecimiento debido a una reacción a un estímulo irritante.

Una enfermedad celular
El cáncer comienza en las células, unidades básicas de los tejidos y órganos del cuerpo. Normalmente las células crecen en un proceso ordenado y equilibrado: se dividen, envejecen y mueren mientras son remplazadas por nuevas células que requiere al cuerpo para su correcto funcionamiento. Algunas veces, este proceso sufre un descontrol y se rompe el equilibrio cuando células nuevas se siguen formando sobre células viejas que se resisten a morir. Estas células, que no son necesarias, forman masas de tejido llamados tumores que pueden ser benignos o malignos.

Además de la hiperplasia el examen de la biopsia puede detectar otro crecimiento celular excesivo anormal no canceroso: una displasia, caracterizada por la pérdida del arreglo del tejido normal y la estructura de la célula. Aunque de carácter temporal, esta displasia es potencialmente cancerosa por lo que debe ser monitorizada y tratada por un especialista. El caso más severo de displasia se conoce como carcinoma in situ, un crecimiento descontrolado de células que permanece en un lugar determinado, sin embargo, este carcinoma puede convertirse en invasor, maligno y metastático, por lo que generalmente debe renovar quirúrgicamente.

El examen microscópico también provee información de la conducta probable del tumor y de su respuesta al tratamiento. Los cánceres con células con mayor apariencia anormal y numerosas células con capacidad de división, tiene la tendencia a crecer más rápidamente, diseminarse a otros órganos con mayor frecuencia y ser menos afectados por las terapias.

G R A D O S D E CÁNCER Y PRONÓSTICO DE VIDA
Basados en esta información los especialistas asignan un grado numérico a los cánceres. Así, los grados I y II se refieren a los cánceres con pocas anomalidades celulares a diferencia de los grados III y IV de mayores anormalidades celulares. Una vez diagnosticado el cáncer, los médicos deben determinar qué tan grande es el tumor y qué tanto ha invadido los tejidos a su alrededor; si se ha extendido a los ganglios linfáticos regionales y, si las células cancerosas se han diseminado (metastatizado) a otras regiones del cuerpo. Con la respuesta a estas preguntas se determina la etapa de desarrollo del cáncer y la probabilidad de sobrevida del paciente.

O P C I Ó N E S D E T R ATAMIENTO
Cuando únicamente se trata de remover parte del tejido prostático se utiliza una cirugía llamada resección transuretral de la próstata (TURP por sus siglas en inglés). En este procedimiento se introduce un instrumento de corte en una sonda por la uretra a través del pene para remover parte de la próstata. El tratamiento de cáncer de próstata depende de la fase del cáncer, así como de la edad del paciente y su salud en general. Normalmente se utilizan cuatro tipos de tratamiento: 1) la prostatectomía, una cirugía para extirpar la próstata y los tejidos cercanos a los que se ha extendido el cáncer. 2) En la terapia de radiación se utilizan rayos X u otros rayos de alta energía para matar las células cancerosas. 3) La terapia hormonal utiliza medicamentos para detener el crecimiento de la próstata y a veces, incluso 4) La extirpación de los testículos para detener la producción de testosterona, siempre y cuando el cáncer esté localizado en la próstata.

El doctor Torres García considera que la sobrevida de un paciente depende de muchas variables tales como tamaño del tumor, agresividad del tumor, etapa clín-
El ultrasonido, las radiografías, la pielografía intravenosa (IVR por sus siglas en inglés), los exámenes de hueso y las imágenes de resonancia magnética nuclear (MRI por sus siglas en inglés), son algunas pruebas que ayudan a los médicos a detectar el cáncer de próstata y otras partes del cuerpo con metástasis.

FACTORES DE RIESGO:
Ambientales:
Ocupación

Estilo de vida:
Alcoholismo
Tabaquismo

Alimentación:
Vitaminas A
Ingesta de Grasa
Sobrepeso

Sexuales:
Vasectomía
HPB

Ant. Familiares:
Ant. Fam. del padrastmo
Hormonas
Edad
Raza

EVOLUCIÓN DEL CÁNCER DE PRÓSTATA

FACTORES DE RIESGO:
Ambientales:
Ocupación

Estilo de vida:
Alcoholismo
Tabaquismo

Alimentación:
Vitaminas A
Ingesta de Grasa
Sobrepeso

Sexuales:
Vasectomía
HPB

Ant. Familiares:
Ant. Fam. del padrastro
Hormonas
Edad
Raza

HORIZONTE CLÍNICO

CAMBIOS A NIVEL MOLECULAR:
- Mutaciones

CAMBIOS A NIVEL CELULAR:
- Displasia
- Cáncer in situ

SIGNOS INESPECÍFICOS:
- Poluria
- Hicútrico
- Disminución del chorro
- Obstrucción uretral
- Anemia
- Debilidad

SIGNOS ESPECÍFICOS:
- DOLOR
- Local
- Distante
- Síntomas urinarios
- Nódulos palpables
- Aumento de tamaño
- Pérdida de peso
- AP positivo
- Metástasis

SECUELAS:
- Impotencia sexual
- Impotencia urinaria
- Fracturas
- Fístulas

Fuente: Registro Histopatológico de Neoplasias Malignas. sa 2001

Afortunadamente para Gustavo Herrera los resultados de su biopsia mostraron un crecimiento de tejido por una excesiva división de células, con estructura y arreglo celular dentro del tejido: una hipertrofia prostática benigna. Con este diagnóstico, el especialista podrá ofrecerle una terapia para reducir el crecimiento de la próstata. Con algunos cuidados y una revisión anual, Herrera podrá llevar una vida más saludable.
Modelado del cáncer mediante la geometría fractal

* Jesús Valdés Montiel Pérez*

* Doctor en ciencias, jefe del Departamento de Posgrado de la Escuela Superior de Computo (Escusa) del Instituto Politécnico Nacional, D. e.: <vald@ipn.mx>
El Instituto Nacional de Estadística Geográfica e Informática tiene registrado que como causa de mortalidad de la población en México, los tumores malignos representan el 12.9 por ciento. Esta causa se posiciona sólo por debajo de las enfermedades cardíacas y de la diabetes.

El cáncer es un problema de salud debido entre otras cosas, a la falta de cultura de prevención de la población mexicana, lo que ocasiona que las instituciones de salud inviertan grandes cantidades de recursos para el tratamiento de sus derechohabientes que padecen de este mal. Por ejemplo, el Hospital Oncológico del Centro Médico Siglo XXI del Instituto Mexicano del Seguro Social ha gastado anualmente más de siete mil millones de pesos.

Los tratamientos para combatir el cáncer se basan principalmente en la cirugía, la quimioterapia y la radioterapia. Cada tratamiento tiene sus características con base en el tipo de cáncer, su localización y su estado de invasión.

Un tumor, en un sentido general, es cualquier alteración de los tejidos debido a una proliferación celular desmedida en cualquier parte del cuerpo. Los tumores se clasifican en general como benignos y malignos.

Los tumores benignos no son cancerosos y en la mayoría de las ocasiones pueden ser extirpados, no son reincidentes y no se extienden a otras partes del cuerpo. Las células de tumores benignos permanecen juntas y a menudo son rodeadas por una membrana de contención. Este tipo de cáncer generalmente no destruye tejido circundante sino que lo desplaza.

Los tumores malignos son cancerosos, pueden dañar e invadir tejidos y órganos cercanos a éste. Las células cancerosas pueden entrar al sistema linfático o al flujo sanguíneo y propagarse a otras partes del cuerpo (proceso que se conoce como metástasis).

Generalmente, la detección de un tumor se realiza por medio de una radiografía convencional, ultrasonido o tomografía; y los procedimientos para determinar su tipo y su estado de desarrollo son la biopsia y la estadificación del tumor. La biopsia consiste en extraer una muestra del tejido del tumor y hacerle un análisis histológico para determinar sus características. Por su parte, la estadificación del cáncer describe básicamente lo que el tumor ha crecido antes de hacer un diagnóstico, documentando la extensión de la enfermedad. Esto es extremadamente importante al definir el tratamiento específico para cada paciente.

Antiguamente se ha establecido que las células de los tumores malignos se reproducen de manera desordenada y aleatoria, lo cual ha permitido que se impulsen un proceso de investigación para determinar el modelo de desarrollo de los tumores cancerosos. Esta investigación ha sido realizada por grupos multidisciplinarios que trabajan con sistemas autónomos de detección de posibles células cancerosas utilizando procesamiento de imágenes y otras técnicas.

Por su parte, en la naturaleza el desarrollo biológico se da como un proceso complejo, en el cual intervienen básicamente las variables de tiempo y espacio. El modelado matemático de un sistema biológico es sumamente complejo y es prácticamente imposible realizarlo con exactitud.

El avance de las investigaciones en este sentido permite establecer una teoría que considera la modelación razonable de los sistemas biológicos mediante la teoría del caos, siendo los denominados fractales la representación gráfica de esos modelos. De esta misma manera la geometría de la naturaleza también puede ser representada y aproximada mediante dicho concepto.

Por lo general, una célula cancerosa presenta una forma irregular y claramente distinguible con respecto a las células sanas. Tal morfología no puede ser modelada con figuras regulares tales como un círculo y sus variantes; pero
sí puede ser modelada con un fractal, dada su propiedad para representar gráficamente fenómenos caóticos, sin un orden aparente, pero con una evidente característica de auto-similaridad. Esto último se refiere al hecho de que cada una de las partes de un fractal es similar a todo el fractal en sí mismo, tal y como se muestra en la figura 2 (fractal de Mandelbrot).

Figura 2. Auto-similaridad de un fractal (Mandelbrot).

Otra característica importante de los fractales es su dimensión. Un cuerpo cualquiera tiene tres dimensiones: ancho, alto y profundidad (p.e. un cubo); una figura en un plano, tiene dos dimensiones: ancho y alto; un punto en una línea tiene sólo una dimensión. En este mismo sentido, el mundo en que vivimos tiene cuatro dimensiones: ancho, alto, profundidad y tiempo. Todas las dimensiones mencionadas en los casos anteriores se expresan con números enteros. La dimensión fractal se expresa con números fraccionarios.

Dicha dimensión fractal se obtiene con la siguiente expresión:

\[D = \frac{\log(N)}{\log \left(\frac{1}{r} \right)} \]

(1)

donde \(D \) es la dimensión fractal, \(N \) es el número de objetos auto-similares y \(r \) es un factor de escala.

Por ejemplo, la curva de Koch consiste inicialmente de una línea:

\[\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \]

Si esta línea es dividida en tres partes y se construye el perfil superior de un triángulo equilátero:

\[\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \]

Debido a que el perfil de un triángulo equilátero las líneas horizontales y las diagonales tendrán la longitud de un tercio (1/3) de la longitud original. Después, cada recta de la figura anterior se divide nuevamente en 3 partes y se construye nuevamente el perfil superior de un triángulo equilátero, con lo cual se obtiene la siguiente figura:
De este proceso el factor de escala \(r = 1/3 \) y de una línea se obtienen \(N = 4 \) objetos autó-similares, con lo que la dimensión fractal de esta figura con las reglas descritas es de \(D = 1.26 \). Si como estado inicial se tiene un triángulo equilátero y a cada lado se le aplica el procedimiento antes descrito se genera el fractal de Koch, figura 3.

Del mismo modo, para cualquier fractal es posible estimar su dimensión. La forma de un fractal tiene una relación estrecha con su dimensión fraccional y el contorno de las células cancerosas puede ser relacionada y modelada con fractales a través de la dimensión fractal\(^8\).

Una célula de cáncer posee en su contorno irregularidades que no son similares a las que muestra el fractal de Koch, por lo que se requiere un fractal más complejo.

El proceso de modelado de las células y su relación con los fractales consiste en: obtener fotografías de las células con un microscopio electrónico (figura 4a); posteriormente deben aplicarse algoritmos para el tratamiento de imágenes de tal forma que la fotografía inicial sea convertida a escala de grises (figura 4b); se corrijan defectos por ruido y se convierte la imagen a blanco y negro (figura 4c). Finalmente, con un algoritmo basado en derivadas, se detecta el cambio de color (negro y blanco) y la imagen del linfocito queda con un contorno negro (figura 4d).

La imagen final contiene el contorno de la célula enferma, la cual, como se había mencionado, tiene contornos característicos.

Entonces, si se conoce la dimensión fractal del contorno de una célula, es posible clasificarla como cancerosa o sana.

Existen varias técnicas para encontrar la dimensión fractal del contorno de la imagen de una célula. En general las técnicas son conocidas como: conteo de cuadros, correlación, sandbox, y por espectro de Fourier entre otras\(^8\).

La técnica comúnmente utilizada por su facilidad de implementación en un programa de computadora, es la de conteo de cuadros. Esta técnica consiste en confinar en una cuadrícula compuesta de \(n \times n \) cuadros, el contorno al cual se le quiere obtener la dimensión fractal. Posteriormente se cuentan los cuadros que están ocupados por el contorno que se está analizando \((N(n))\) y se utiliza la definición matemática de la expresión (1):

\[
D = \lim_{n \to \infty} \frac{\log(N(n))}{\log(n)}
\]

(2)
Esta expresión significa que se puede aproximar el valor de la dimensión fractal cuando se usa una cuadricula con un número \(n \) de elementos muy grande. Entonces, entre mayor sea el número \(n \times n \) de cuadros en la cuadricula, mejor será la aproximación al valor de la dimensión fractal.

Si se analiza un perfil, por ejemplo el fractal de Koch o un perfil de una célula cancerosa, y se cuadricula con \(5 \times 5 \) cuadros \((n=5)\), figura 5a; los cuadros que contienen al perfil son \(N(n)=13 \); es decir que la dimensión fractal es aproximadamente de \(D=1,59 \). Si en la cuadricula aumenta el número de cuadros a \(10 \times 10 \), \(n=10 \) (figura 5b), los cuadros que contienen el perfil son \(N(n)=26 \); entonces la dimensión fractal es de \(D=1,41 \). Este valor es una mejor aproximación de la dimensión fractal con respecto al cálculo con la figura 4a. Para el caso de la figura 5c, con \(n=30 \) y \(N(n)=100 \) tiene una \(D=1,35 \). Si se sigue aumentando el número de cuadros se obtendrán mejores aproximaciones de la dimensión fractal \(D \). Debido a que el perfil de la figura 4 es el fractal de Koch, los cálculos con la técnica de conteo de cuadros debe aproximarse a 1,26.

El análisis de la dimensión fractal de las células cancerosas que han sido reportadas por Bauer6 y Brú8 tienen una dimensión fractal ubicada en el intervalo 1,14 a 1,38 ±0,05 y pertenecen a células de leucocitos invadidos por leucemia y células de cáncer cerebral. Por su parte, las células sanas están por debajo de dimensiones fractal de 1,14. Estos resultados dan pie a que un análisis con procesamiento de imagen de una célula y un análisis de la dimensión fractal de su contorno o forma, puedan servir de base para clasificar a las células como cancerosas o sanas.

Por otro lado, el desarrollo de un tumor (conjunto de células) que han crecido sin control con respecto al tiempo, también puede procesarse analizando su dimensión fractal en diferentes momentos de su desarrollo. Brú8 reporta que dicho análisis reporta dimensiones fractales similares. Es decir, la morfología de la rugosidad del contorno del tumor es similar a lo largo de su desarrollo. Para tal análisis se calculan coeficientes de rugosidad y de crecimiento a partir del procesamiento de imágenes fotográficas, siendo uno de los resultados importantes de este modelado que tal crecimiento es lineal, lo cual contradice el conocimiento tradicional referente a que el crecimiento de los tumores es de tipo exponencial.

Brú interpreta que el crecimiento de un tumor es lineal debido a que la mayor actividad del tumor se presenta en su superficie, mientras que en el interior las células no cuentan con espacio para crecer.

El crecimiento de un tumor de 2 cm\(^2\), 100 células aproximadamente, según la cinética celular para alcanzar tal volumen son necesarias solo 32 duplicaciones partiendo de una célula inicial, pero los experimentos de Brú muestran que se requieren 800 duplicaciones8.

Un tumor de 2 cm\(^3\) presenta aberraciones cromosómicas considerables, pero con 32 duplicaciones no son suficientes para que se presenten, pero si lo es para 800 duplicaciones. Por otro lado, está el factor del tiempo: una célula tiene un tiempo de
duplicación de 72 horas aproximadamente, pero si se considera a un tumor (con cientos de células), se requieren hasta 3 meses para duplicarse. Es decir, si una célula se duplica en 72 horas (en este tiempo se tienen 2 células), todas las células de un tumor (por ejemplo 100 células) se deberían de duplicar en esas mismas 72 horas (ahora se tendrían 200 células), pero en estudios reales no sucede así. Esto se interpreta que sólo las células en la superficie del tumor son las que se duplican y que están más activas.

En el crecimiento del tumor, según Brú, las nuevas células se adhieren a las concavidades de la superficie del tumor, debido a que necesitan espacio para crecer y posteriormente duplicarse. Las rugosidades del tumor donde habría más posibilidades de nutrientes se encuentran presionadas por los órganos sanos del cuerpo. Entonces, el tumor primero daña y elimina el órgano y posteriormente invade su espacio.

Esta interpretación de Brú contradice los conocimientos publicados en la medicina, pero justifica tanto el modelado fractal de las células, como el modelado fractal del desarrollo del tumor, dando lugar a posibles tratamientos basados en el reforzamiento del sistema inmunológico.

Un tumor canceroso produce en sus alrededores ácido láctico, sustancia que en condiciones normales el cuerpo no produce y además no elimina (solo se produce en los músculos cuando las personas hacen ejercicio y ahí es fácilmente eliminado).

Este ambiente ácido no permite que los linfocitos, monocitos, basófilos y eosinófilos (4 tipos de glóbulos blancos) destruyan las células cancerosas. Pero el quinto tipo de glóbulo blanco, los neutrófilos si pueden vivir y hacer su trabajo en un medio ácido. Algunos experimentos con tumores malignos en ratones que han sido estimulados para crear este tipo de glóbulos blancos, han permitido la eliminación del tumor de manera eficiente.

Diferentes investigadores sobre este tema, especulan sobre la existencia de pequeñas variaciones en la dimensión fractal de las células cancerosas, mismas que pueden estar relacionadas con la metástasis. Complementariamente, se desarrollan modelos fractales para explicar y predecir la posible diseminación del cáncer en el cuerpo humano. Conociendo dicha relación y la predicción sobre la eventual diseminación, un médico podría contar con la información del estado de la enfermedad a corto plazo y poder plantear un tratamiento adecuado.

Referencias

Otra voz... La visión del joven investigador

Un poderoso sistema de navegación por satélite en desarrollo que ofrecerá servicios de posicionamiento y control en tiempos globales con una enorme exactitud que superará, incluso, a los sistemas actuales, como el Global Positioning System (GPS)

Galileo: Sistema Europeo de navegación por satélite

Julio Covarrubias Ruiz*
Sergio Vidal Beltrán **

*Alumno del Programa Institucional de Formación de Investigadores (FIN), del IM de la Escuela Superior de Ingeniería Mecánica y Electrónica (ESIME) unidad Zacatenco. D. e.: juicito11@hotmail.com

**Profesor de la Maestría en Ingeniería de Telecomunicaciones de la esme unidad Zacatenco. D. e.: <świadab@ipn.mx>
La necesidad de implementar un sistema de posicionamiento de alta exactitud y de ampliar la cobertura de redes de navegación por satélite, tienen como respuesta el desarrollo del sistema de navegación por satélite GALILEO, el cual proporcionará ventajas inimaginables a sus usuarios.

Desde siempre las personas han tenido la necesidad de saber en dónde están y hacia dónde se dirigen, ya sea que se encuentren en la tierra, en el mar o en el aire. La respuesta a esta necesidad la ha proporcionado la navegación, mediante sus diferentes manifestaciones y sistemas desarrollados a través de la historia.

Hoy en día la navegación por satélite es la base para ofrecer servicios de posicionamiento en todo el mundo, con la ventaja de que la tecnología satelital no depende de las condiciones de visibilidad del sol y las estrellas, que eran factores indispensables en los sistemas de navegación de épocas anteriores. Se agrega el hecho de que los niveles de exactitud en el posicionamiento de aquellos sistemas no tienen comparación con los proporcionados por el sistema de navegación por satélite disponibles en la actualidad, cuyo intervalo de error es cercano a un metro, mucho menor que el de los sistemas rudimentarios.

El principio de operación de la navegación por satélite es un concepto relativamente sencillo. El usuario que desea conocer su posición dispone de un receptor especialmente diseñado para recibir señales de varios satélites, los cuales forman parte de constelaciones que orbitan alrededor de la tierra. El receptor tiene una unidad de memoria con la información detallada de cada satélite, por lo cual es capaz de reconocer al satélite que ha emitido la señal que está recibiendo. Así mismo, puede calcular el tiempo requerido por la señal para llegar al dispositivo y, por consiguiente, la distancia a la que se encuentra el satélite emisor. Cada uno de los satélites está equipado con un reloj atómico para medir el tiempo con gran exactitud y envía señales únicas que indican el momento en que fueron enviadas. Es indispensable que estos relojes se sincronicen entre sí y con el reloj ubicado en el receptor, ya que para conocer la posición exacta del receptor en un determinado momento, deben recibirse simultáneamente señales de al menos cuatro satélites. Lo anterior se debe a que la intersección de esas señales es la que determina la posición del usuario.

La distancia se obtiene al multiplicar la diferencia entre el tiempo de emisión del satélite y el tiempo de recepción del dispositivo, por la velocidad de la luz.

Sín embargo, ya que existen factores que proporcionan un cierto nivel de incertidumbre, la solución ubica una zona de posibles localizaciones.

SISTEMAS PRECURSORES (GPS, GLONASS, EGNOs)
En la actualidad existen dos sistemas de navegación por satélite en operación, el sistema estadounidense GPS y el sistema ruso GLONASS. Ambos desarrollados inicialmente para uso militar.

El sistema ruso Global Navigation Satellite System (GLONASS), cuyo primer satélite fue lanzado en 1982, estuvo funcionando solo algunos meses con los 24 satélites que lo conformaban inicialmente, después el número se redujo sensiblemente a 10 satélites y actualmente GLONASS opera con 14 artefactos en órbita.
El Sistema Global Positioning System (GPS) propiedad del Departamento de Defensa de los Estados Unidos, comenzó a desarrollarse en 1973, como heredero del sistema Navy Navigation Satellite System (NNSS); los primeros satélites que conforman este sistema se lanzaron en 1978, funcionando aceptablemente desde principios de los noventas. El sistema GPS ha ido creciendo en popularidad a raíz de la eliminación de la degradación artificial de la señal (Selective Availability) y actualmente es utilizado en gran número de aplicaciones.

Galileo, el sistema europeo de navegación por satélite

El sistema EGNOS es un claro precursor del programa Galileo, en particular en el CGS (Segmento Terreno de Misión) en donde EGNOS guarda grandes similitudes con Galileo.

El sistema EGNOS no es un sistema de navegación por satélite (GNSS), sino un sistema que mejora la presentación de los sistemas GPS y GLONASS en Europa. EGNOS no solo incrementa el número de señales, sino que también aplica una corrección para mejorar la exactitud de 20 a 2 metros. Sin embargo, su principal valor añadido es su capacidad de avisar al usuario sobre cualquier mal funcionamiento de la señal de navegación en menos de 6 segundos, enviando además un mensaje de integridad.

Teniendo en cuenta la importancia de los sistemas de navegación por satélite y el desarrollo de modernas infraestructuras de transporte, Europa decidió a finales de la década de los noventa, iniciar el desarrollo de Galileo, un Sistema Global de Navegación por Satélite para proporcionar servicios de posicionamiento de alta exactitud garantizados a escala mundial bajo control civil.

Galileo, con su capacidad para proporcionar servicios de navegación y posicionamiento de manera autónoma, será también interoperable con los sistemas GPS y GLONASS, lo cual incrementa las prestaciones para todo tipo de usuarios alrededor del mundo.

Además de ofrecer una exactitud del orden de un metro, algo sin precedentes para un sistema de acceso público, Galileo garantizará la disponibilidad del servicio en todo momento, salvo condiciones extremas, e informará a los usuarios de cualquier anomalía en los satélites del sistema al cabo de unos cuantos segundos.

Estas características lo convierten en un servicio idóneo en aplicaciones en las que la seguridad es crucial, tal como la navegación aérea.

Galileo estará basado en una constelación de 30 satélites y en una diversidad de componentes terrestres globales, regionales y locales útiles para proporcionar información de navegación aplicable a muchos sectores.

De los 30 satélites de la constelación, 27 serán operacionales y 3 de reserva; se localizarán en tres planos orbitales de la Orbits Terrestre Media (MEO), a una altura de 23 222 km, con una inclinación de 56° con respecto al plano ecuatorial.

Cada plano dispondrá de nueve satélites operacionales igualmente espaciados y un satélite de reserva que puede ser reprogramado para reemplazar cualquier satélite fallido en ese mismo plano.

El control de la constelación de satélites, la sincronización de los relojes atómicos, el procesamiento de la integridad de la señal y la gestión de los datos de todos los elementos internos y externos, se realiza desde los dos Centros de Control Galileo (CCC) situados en Europa.

El sistema Galileo proporcionará servicios de alto nivel a usuarios en todo el mundo, incluso en aquellos en los que no exista infraestructura terrestre. Destaca el servicio gratuito para todo público, mis-
mo que brindará datos sobre posicionamiento y tiempo, con prestaciones comparables a los sistemas actuales GNSS. También puede resaltarse el servicio Safety of life, orientado a mejorar la seguridad de los sistemas de servicio abierto especialmente en las zonas donde no se cuenta con infraestructura terrena de servicios.

Por su parte, el servicio comercial proporcionará acceso a dos señales adicionales respecto de las proporcionadas por el servicio abierto, que permitirán incrementar la recepción de datos y mejorar la exactitud. El servicio público regulado proporcionará, con acceso controlado, posición y tiempo a usuarios específicos que requieran una alta disponibilidad del servicio. El servicio de búsqueda y rescate representará la contribución europea al sistema internacional COSPAS-SARSAT para actividades humanitarias de este tipo.

En la actualidad Galileo es un sistema que está a punto de convertirse en una realidad.

El 28 de diciembre de 2005, fue lanzado el primer satélite del proyecto Galileo. El satélite Giove A (Galileo in orbit validation element) a bordo de un cohete Soyuz-Fregat, desde el cosmodromo de Baikonur, en Kazajstán.

Sin duda el programa Galileo es el proyecto más ambicioso en lo que a sistemas de navegación por satélite se refiere en la actualidad. Esta poderosa red de telecomunicaciones estará totalmente construida en 2010 aunque a partir del 2008 se espera el inicio de sus operaciones.

Referencias

<European Space Agency. www.esa.int>
<Asociación Española de Empresas del Sector>
<Espacial.wwww.preespacio.org>
<Alcatel. www.alcatel.com>
Más innovación, más fascinación

Electrónica, telecomunicaciones y entretenimiento

Salón Internacional de la Electrónica

IFA 2006

Sergio Vidal Beltrán
*Marco A. Acevedo Mosqueda***

*Profesor de la Maestría en Telecomunicaciones de la Escuela Superior de Ingeniería Mecánica y Eléctrica (esime), unidad Zacatenco D.e: svidalb@isme.mx

**Estudiante de la Maestría en Telecomunicaciones de la esime, unidad Zacatenco.
Más innovaciones, Más fascinación”, fue la promesa del Salón Internacional de la Electrónica IFA 2006, que se realizó del 1 al 6 de septiembre en la ciudad de Berlín, Alemania; donde se reunieron poco más de mil empresas de unos 40 países para mostrar sus más recientes avances en la electrónica de consumo.

Durante la edición 2005 se firmaron contratos por un total de 2 500 millones de euros, un nivel que los organizadores esperan ver superado en el 2006. A partir de este año los organizadores decidieron realizar anualmente el salón, en lugar de cada dos años, como hasta ahora.

La exposición se dividió en 6 categorías: a) Televisión y entretenimiento, b) Imagen y música digital, c) Juegos y cómputo personal, d) Comunicaciones personales, e) Servicios satelitales de red y por cable, y f) Servicios y sonido para automóviles. Aún así, los anuncios que más llamaron la atención fueron los de las pantallas de alta definición, ya fueran de plasma o LCD, la TV móvil, el inicio de la contienda de Blu-ray (la “e” de “blue” tuvo que desaparecer) contra HD-DVD (DVD de Alta Resolución), así como los teléfonos que utilizan Skype o MSN.

TELEVISIÓN DE ALTA DEFINICIÓN

Diez años después de presentar la primera televisión plana de plasma, Phillips mostró un prototipo de LCD de 100 pulgadas con la tecnología Ambilight Full Surround, novedad en la gama de televisores Ambilight de la marca holandesa, que ahora también proyecta luz ambiental en los cuatro laterales de la pantalla.

De entre sus novedades, la empresa coreana Samsung destacó el televisor LE40M91, el primer LCD de 40 pulgadas que utiliza tecnología de retro-iluminación diodo emisor de luz (LED), sistema que permite disfrutar del mayor contraste de la industria, además de enriquecer los colores de sus pantallas. Los modelos LE40S7 y LE46S7, dos LCD con resolución Full HD (1920 x 1080 líneas de escaneado progresivo), de 40 y 46 pulgadas respectivamente, también fueron presentados por éste fabricante.

Por su parte, LG añadió un VCR a sus televisores de plasma con disco duro integrado para grabar lo que se desee directamente desde el televisor. Además presentó un plasma de 102 pulgadas y un LCD de 100. Complementariamente, promocionó una pantalla LCD con efecto 3D sin necesidad de lentes especiales.

HD DVD Y BLUE-RAY

En el pasado se dio la guerra entre los formatos VHS y Betamax; saliendo triunfador el primero. En la IFA 2006 se vuelve a presentar una contienda entre dos nuevos formatos, ahora de alta definición, el HD DVD y Blu-ray, los cuales son incompatibles. Tanto el Blu-ray como el HD DVD son formatos de disco óptico, muy similares a los actuales DVD y CD, pero con una gran capacidad, lo que permite su uso para el almacenamiento de video.
de alta definición. En esencia, todo es posible gracias al uso de un láser azul-violeta que, debido a su menor longitud de onda, permite grabar más información en menor espacio.

A favor del Blu-ray están sus discos de mayor capacidad (25 GB por capa), un tratamiento específico en los BD (Blu-ray Disc) que reduce el riesgo de deterioro y, sobre todo, el apoyo de las principales compañías de electrónica de consumo y productoras cinematográficas, que ya han integrado la Blu-ray Disc Association: Sony, Panasonic, LG, Hitachi, Pioneer, Philips, Samsung, Sharp, Apple, Buena Vista International, Warner, 20th Century Fox y TDK, entre otras.

En su contra tiene el precio ¿es más caro que su competidor? y la lentitud con la que está llegando al mercado; ha habido demora importante en el lanzamiento de los primeros reproductores y han surgido ciertos retrasos por la mayor dificultad que supone la creación de los discos, ya que son necesarias nuevas plantas para su fabricación.

El HD DVD es un producto defendido por Toshiba, que no es poca cosa. Cuenta con la ventaja de haber salido antes al mercado que su competidor y a un precio bastante más bajo; ya existe una importante variedad de películas en este formato y los costos que entraña la fabricación de los discos son menores.

Cuenta con el nada despreciable apoyo de NEC, Sanyo, Intel, Universal Pictures y, sobre todo, Microsoft, lo que hace que la balanza aún no se haya inclinado del todo a favor de alguno de los contendientes.

En su contra, el HD DVD tiene su capacidad inferior (15 GB por capa), una tasa de transferencia más lenta y la menor durabilidad de los discos, mucho más susceptibles a la suciedad y a otras agresiones, pues no reciben tratamiento alguno de protección.

Uno de los puntos fuertes del rayo azul o Blu-ray es el ya cercano lanzamiento del PlayStation 3 o PS3, de Sony, que se prevé para el próximo mes de marzo. PS3 reproducirá discos Blu-ray, aspecto fundamental que puede decidir finalmente de qué lado caerá la moneda de los DVD de alta definición. No cabe duda que PS3 será un producto superventas con el cual, en pocos meses, se conseguiría que millones de personas tuvieran en su casa un reproductor de alta definición Blu-ray.

TELÉFONOS IP INALÁMBRICOS SKYPE

Skype en conjunto con NETGEAR anunciaron el lanzamiento del primer teléfono IP inalámbrico con capacidad de realizar llamadas a otros usuarios de Skype en cualquier parte del mundo donde se tenga un acceso Wi-Fi, sin necesidad de una computadora. Toda la lista de contactos Skype se muestra en la pantalla a color del teléfono y añade la funcionalidad de saber cuando se tiene conexión, con lo cual los usuarios podrán estar en línea y disponibles en todo momento. Adicionalmente podrán hacer llamadas a teléfonos convencionales mediante cuotas bajas.
REPRODUCTORES DE VIDEO PERSONALES

Creative aprovechó IFA 2006 para lanzar su nuevo reproductor personal multimedia, el Zen Vision W, reproductor mp3 y multimedia de pantalla ancha para películas, música y fotos. Su pantalla de 16:9 de alto brillo, resistente a los rasguños y con sistema de ajuste, muestra los contenidos aprovechando todo el espacio de visualización; asimismo, su disco duro de gran capacidad permite almacenar hasta 120 horas de películas, 15 000 canciones o miles de fotos. El reproductor posee una ranura Compact Flash para transferir fotos desde cámaras digitales y acepta los formatos de película y sonido más habituales, incluyendo las carátulas de álbumes y decoraciones personalizadas. Algunas de sus funciones adicionales son; FM, micrófono para grabar en directo y conexiones a TV y bocinas externas.

AYUDAS PARA LA NAVEGACIÓN GEOSAT 4 ALL

Navegador multifuncional pensado para planear las rutas de desplazamiento de cualquier lugar a otro dentro de Europa. El GEOSAT 4 ALL, está equipado con un disco duro de 4 GB que contiene el atlas cartográfico del viejo continente. Presenta una pantalla de alto contraste de 5,6 pulgadas, además de tener salida de video para conectarlo a un DVD o a una Laptop. Adicionalmente incorpora la opción de monitoreo de tráfico en las principales ciudades de Europa a fin de que el conductor pueda evitar los congestionamientos.

La IFA es el salón de exposiciones en electrónica más antiguo, ya que data de 1924. Fue utilizada por Albert Einstein para promover la radio. Goebbels estuvo a cargo de ella entre 1933 y 1939. En 1973, se presentó el fallido sonido cuadrafónico; en 1979, el CD; la TV con sonido estereofónico en 1981; en 1989, las pantallas con formato 16:9 y el Mini-Disc en 1991. Al salón de Berlín asistieron 250 mil visitantes y más de mil expositores provenientes de 40 países. En total se realizaron transacciones del orden de 2.5 billones de euros únicamente durante el periodo en que operó la Feria.

REFERENCIAS

<IFA2006. www.ifa-berlin.de/>
• El campeón: Papa makech, de la Universidad Autónoma de Yucatán
 • Espectáculo, innovación y pasión

Guerra de Robots en el IPN

Ricardo Urbano Lemus*
originales robots diseñados por estudiantes mexicanos, más de cuarenta batallas, concursos, música y mucha adrenalina, fueron los ingredientes del gran espectáculo que ofreció a más de 2 000 asistentes, la primera “Guerra de Robots” del Instituto Politécnico Nacional (IPN).

Como parte de las celebraciones del LXX aniversario del IPN y a los diez años de la Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas (UPIITA), se llevó a cabo el 4, 5 y 6 de octubre de este año, el Primer Concurso de Guerra de Robots, dentro del marco del Segundo Congreso Nacional Interdisciplinario de Tecnologías Avanzadas (Chokna) 2006.

Robots diseñados por estudiantes de ingeniería, de escuelas públicas y privadas, de Querétaro, Veracruz, Oaxaca, Yucatán y del área metropolitana se enfrentaron en busca del triunfo. Durante los dos primeros días se llevaron a cabo las etapas preliminares, y al tercer día sólo llegaron los mejores cinco robots del concurso.

Las expectativas fueron superadas, “la respuesta a la convocatoria fue muy positiva, hubo mayor participación de la que se esperaba, entre los participantes, el jurado, los patrocinadores, los medios y el público, hicieron un gran evento”, Comento Luis Guillermo Ayala, Jefe de Relaciones Públicas, de la rama estudiantil del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE por sus siglas en inglés) encargada de la organización del concurso.

Los Finalistas

Vespo, Draco, Pichiriilo, Titán y Papa makech fueron los cinco prototipos finalistas, los cuales se enfrentaron uno a uno hasta conquistar el triunfo.

Vespo, fue diseñado por Enrique García, Rodolfo Aguilar y Nava Sánchez, estudiantes de la Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME) Azcapotzalco. Fue construido en una semana, con materiales reciclables y el equipo expresó sentirse muy contento de participar y tener posibilidades de ganar.

El segundo finalista fue Draco, prototipo de la Universidad del Valle de México (UVM) campus hispano, en el diseño de este robot participaron Racial Vázquez, Sergio Orozco, Michelle López y Alejandro González. Su construcción se llevó a cabo durante mes y medio, pesó 15 kilogramos y contó con un arma que perforaba al oponente. Por su parte los estudiantes dijeron estar muy contentos por participar en el evento, esperando no sea el último.

Con lanzador de agua y una sierra, Pichiriilo pretendía obtener el triunfo, prototipo totalmente politécnico, ya que en el se conjuntó la creatividad de estudiantes de la ESIME Zacatenco, Culhuacán y la Escuela Superior de Física y Matemáticas (ESFM). El prototipo se construyó en un mes e invirtieron 300 pesos. Gerardo González, Omar Juárez, Nezahualcoyotl Jiménez se emocionaron al participar con otras escuelas y dijeron que el evento era fenomenal.

Estudiantes de la Universidad Autónoma de Yucatán trajeron a su prototipo Papa makech, el cual fue un diseño retomado de un prototipo que habían construido anteriormente, lo calificaron como una versión más grande y fuerte. Los participantes consideraron reñida la competencia, sin embargo, esperaban un buen resultado. Participaron Raymundo Ortiz, Rogelio Félix y Kevin Cuevas.

Titán, representó a los estudiantes de la ESIME Culhuacán. El prototipo tuvo un arma de sierra, un sistema hidráulico y mucha velocidad. Participó Alejandro Trejo.

En la primera ronda de semifinales Pichiriilo, fue descartado, quedando cuatro robots, los contendientes se decidieron mediante...
un sorteo. Resultó Vespo contra Draco y Papa makech contra Titán. En el primer combate Draco venció a Vespo, pasando a la final y enfrentando a Papa makech, quien venció a Titán.

En un combate previo a la final, se enfrentaron Vespo y Titán por el tercer lugar. El ganador fue Titán, quien obtuvo un reconocimiento económico de 2 000 pesos.

EL ÚLTIMO COMBATE...
Incredíble para el público, en su mayoría politécnico, quienes esperaban que un prototipo de la institución obtuviera el primer lugar, sin embargo, enseguida adoptaron al prototipo de Papa makech, el cual, en una difícil batalla, en medio de gritos y porras, logró vencer al prototipo de la UVM.

Draco obtuvo un reconocimiento de 5 000 pesos. Papa makech fue el primer triunfador de la Primer Guerra de robots a nivel nacional. El equipo obtuvo un reconocimiento de 10 000 pesos, una webcam inalámbrica “Prodigy Cam” donada por Telmex y una invitación a participar como ponentes en el próximo Congreso del Instituto Tecnológico de Apizaco, Tlaxcala, con todos los gastos pagados.

SE CONJUNTO UN GRAN ESPECTÁCULO
El jurado estuvo integrado por profesores especialistas en materia de robótica de la UPITA y de la UVM, ellos evaluaron el diseño, la innovación y creatividad de los prototipos, así mismo los materiales con los que fueron elaborados, sistemas empleados, pero sobretodo su desempeño en la competencia. Al respecto, el maestro en ciencias Sergio Méndez, profesor de la UPITA, expresó que los prototipos que se presentaron están avanzando y que cada año va aumentar su calidad, el profesor, miembro del jurado, considera que guerra de robots es la primera piedra de uno de los posibles concursos más importantes de México.

El maestro en ciencias Rodrigo Hurtado de Mendoza Valdez director de la carrera de Ingeniería Mecatrónica de la UVM, campus Lomas verdes, comentó que la calidad de los robots es muy buena, que se está mejorando y que dicho evento es de suma importancia para la comunidad universitaria del país.

El apoyo de los patrocinadores, fue vital para el desarrollo del evento, entre ellos se encontraban: Telmex, Microsoft, Grupo Modelo y Haltica (empresa mexicana dedicada al diseño y construcción de dispositivos mecatrónicos y electrónicos).

Gracias a la difusión de los medios, al evento asistieron niños, señores, señoritas, profesores y estudiantes de licenciatura y vocacionales, aproximadamente entre 600 y 800 personas cada día, superándose las cifras estimadas de público que se esperaba.

Los asistentes adoptaban rápidamente a algún robot para apoyarlo. Cada batalla era una lucha de porras entre el mismo público, el cual se dividía por un favorito, y se vivía un éxtasis de adrenalina. El staff se encargó de mantener el orden del evento, asimismo de la seguridad de cada uno de los asistentes, pero también animó a el público, organizando las famosas ollas, la porra del politécnico y concursos de baile, lo cual amenizó mucho más el evento.

GRACIAS IEEE...
La respuesta de la convocatoria fue de suma importancia para hacer de este concurso un evento que marcó una nueva referencia en el IPN. Sólo queda agradecer a los participantes, a los medios, los patrocinadores, al staff y al público asistente, pero sobretodo al comité organizador de la rama estudiantil de la IEEE por proponer este tipo de eventos, en el cual se demostró a calidad, habilidad y creatividad de los estudiantes de ingeniería de México, y al mismo tiempo se ofreció un gran espectáculo para el público en general.
INSTITUTO POLITÉCNICO NACIONAL
CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

CONGRESO INTERNACIONAL DE COMPUTACIÓN
DEL 21 AL 24 DE NOVIEMBRE DE 2006

MAGNO CONGRESO INTERNACIONAL DE COMPUTACIÓN CIC-IPN

Objetivo: En el marco del 70 Aniversario del Instituto Politécnico Nacional, el Centro de Investigación en Computación organiza el Magn Congreso del CIC-IPN. Este gran evento tiene como objetivos: 1) reunir a investigadores, profesores, estudiantes y profesionales interesados en algunos de los lineamientos de investigación de la Investigación en la Investigación y la Instrucción de Computación para que expongan sus más recientes ideas y logros, 2) invitar a reconocidos científicos para que presenten ante los asistentes sus puntos de vista, así como los problemas abiertos donde se pueda continuar haciendo investigación, 3) reconocer a los mejores trabajos presentados en cada uno de los congresos, y 4) prestar los mejores prototipos de software y hardware desarrollados por estudiantes.

CENTRO CULTURAL "JAIME TORRES BODET" DEL IPN
Auditorio "B" "Manuel Moreno Torres"

♦ CONFERENCIAS MAGistraLES

(CIC'2006)
César Goñiño Lozano
Microsoft Corporation
"Evolution of database technologies"

(CIC'2006)
Manuel Reyes-Gómez
Microsoft Research
"Probabilistic Graphical Models for Audio and Biology"

(CICIND'2006)
Alexander Voidenbaum
Univ. of California, Irvine
"Architectural Techniques for reducing energy consumption in associative data caches"

(NNAM'2006)
Bernard Widrow
Stanford University
"Cognitive Memory and Its Applications"

(CONGEO'2006)
Armando Guevara
Gt NetCorporation Inc.
"Is-Net.Net: Spatially Enabled Information Services"

(CDIS'2006)
Juan Eduardo Vargas
Univ. of South Carolina, U.S.A
"Data Mining"

(METODOLOGÍA'2006)
Jesús Cardona-Costa
U. Politécnica de Madrid
"Universal Networking Language"

EN ESPAÑOL
♦ CONFERENCIAS SOBRE TECNOLOGÍAS AVANZADAS DE LA INFORMACIóN
♦ PONENCIAS TÉCNICAS
♦ SESIONES DE POSTERS
♦ CONFERENCIAS EMPRESARIALES
♦ EXPOSICIÓN DE EQUIPO DE CÓMPUTO Y SOFTWARE

SEDES

V Congreso Internacional de Computación (CIC'2006)

VII Congreso Internacional en Control, Instrumentación Virtual y Sistemas Digitales (CICIND'2006)

Biblioteca Nacional de Ciencia y Tecnología (UN!@B"
Biblioteca Nacional de Ciencia y Tecnología (UN!@B"
Telef. 07735. D.F.

VI Congreso Internacional de Minas de Datos y Sistemas de Información (COSI'S-2006)
I Congreso Internacional sobre Metodología y Desarrollo de Materiales para la Educación a Distancia (METODOLOGIA'2006)
Centro de Investigación en Computación Av. Juan de Dios Baita, s/n Eje 10, Benito Juárez, D.F.

INFORMES:
http://magnocongreso.cic.ipn.mx, magnoclic.cic.ipn.mx, relpuc@cc.cic.ipn.mx
Tel. (55) 5621-7300, (55) 5621-7350, (55) 5621-7350
La biblioteca "Jerzy Plebański" es la más completa del Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN por sus características y la única en el país por sus áreas de especialización en física y matemáticas.

El científico fue homenajeado a un año de su muerte.

El físico polaco colaboró en la solución del problema de movimiento en la Teoría General de la Relatividad.

Inauguran biblioteca en honor al nieto académico de Albert Einstein

Octavio Piasant Zendejas*
Como parte de la celebración del XLV aniversario del Departamento de Física del Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional (IPN), se rindió homenaje póstumo al físico polaco Jerzy Plebański,—considerado por la comunidad científica como “el nieto académico” de Albert Einstein— el fundador y primer jefe de dicho departamento, con la inauguración de la biblioteca que lleva su nombre en septiembre pasado.

Los trabajos de Jerzy Plebański son ampliamente reconocidos y citados por especialistas en todo el mundo en el campo de la relatividad general y de la física y matemáticas. El científico polaco es identificado como el nieto académico de Einstein debido a que retomó varias de las líneas de investigación del físico alemán. El doctor Jerzy Plebański trabajó con Leopold Infeld, colaborador cercano y coautor de varios escritos de Einstein. Ambos científicos escribieron el libro titulado *Motion and Relativity*, que se convirtió en poco tiempo en referencia obligada para los científicos del área. La relación con Infeld marcó en gran medida la dirección de los trabajos de Plebański hacia la Relatividad General, la electrodinámica, entre otras, como la afición por solucionar las ecuaciones planteadas por Einstein.

El acervo producido por el doctor Plebański a lo largo de su amplia trayectoria científica abarca 188 publicaciones, entre las que se incluyen artículos, monografías y libros. Todas ellas suman más de mil citas en trabajos publicados en revistas especializadas de prestigio internacional. El maestro Plebański fue una persona convencida en formar recursos humanos, su contribución a la preparación de jóvenes científicos se refleja en una amplia escuela alrededor del mundo, pero sobre todo en México, donde sus aportaciones han influido en diversas formas para que muchos jóvenes mexicanos se hayan volcado a las actividades de investigación. El doctor dirigió 18 tesis de doctorado, nueve en la Universidad de Varsovia y nueve en el Cinvestav.

HOMENAJE A UN GRANDE

Al homenaje y la ceremonia de inauguración de la biblioteca asistieron la viuda, familiares del doctor Plebański, el embajador de Polonia en México, el señor Wojciech Tomaszewski —quien develó una placa conmemorativa—, la doctora Rosalinda Contreras Theurel, directora general del Cinvestav, el doctor Gerardo Herrera Corral, jefe del Departamento de Física del centro y un nutrido grupo de amigos, colaboradores, alumnos y ex alumnos del científico europeo, académicos e investigadores nacionales y extranjeros.

En el marco de la ceremonia de inauguración de la biblioteca se realizaron varias actividades, como la presentación de los testimonios de amigos y colegas acerca de la vida fructífera y azarosa del científico, la exhibición de libros de su trabajo y posteriormente se realizó un seminario y un ciclo de conferencias de divulgación científica.

La Biblioteca de Ciencias Exactas (BCE) que hoy lleva el nombre del inmenso físico polaco cuenta con acervos bibliográficos de los departamentos de Física, Matemáticas y Matemática Educativa del Cinvestav. Los materiales de la biblioteca están conformados por 489 títulos de revistas científicas vigentes, 32 mil volúmenes de libros, más de mil tesis de maestría y doctorado y 70 videos de difusión y divulgación. Parte de los acervos de dicha biblioteca provienen del Centro de Documentación Científica y Técnica de México, creado en 1954 por el gobierno federal y la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). La biblioteca Jerzy Plebański es como única en su tipo a nivel nacional por el cúmulo de materiales especializados que la conforman.
EN LA FRONTERA DEL CONOCIMIENTO

Jerzy Franciszek Plebański nació en mayo de 1928 en la ciudad de Varsovia Polonia. Sus más cercanos maestros y familiares le auguraban éxito en la pintura por su talento y habilidades mostradas desde su niñez para el dibujo. No obstante, la situación por la que atravesó su patria con la invasión de las divisiones blindadas nazis en 1939 y la utilización de la bomba atómica en territorio japonés en 1945 cambiaron radicalmente su camino hacia una brillante futuro en la física, no sólo de su país, sino a nivel mundial.

El joven Jerzy estudió física en la Universidad de Varsovia; aún como estudiante (1949) fue nombrado asistente de la cátedra del reconocido profesor Wojciech Rubinowicz. A principios de la década de los cincuenta del siglo pasado termina su maestría y durante sus estudios de doctorado es nombrado profesor asistente. En 1957, trabajó con el científico Leopold Infeld, colaborador y coautor de varios trabajos de Albert Einstein. Infeld invita a Plebański a escribir una extensa monografía sobre los avances más importantes de la Teoría de la Relatividad de Einstein. Dicha monografía fue publicada en 1960 con el título Motion and Relativity, que en poco tiempo se convirtió en un clásico dentro de la literatura científica a nivel mundial. En 1958, Plebański recibió la prestigiosa beca Rockefeller para realizar una estancia académica en el Instituto de Estudios Avanzados de Princeton, en los Estados Unidos durante 1958-1959. En Princeton conoce y establece amistad con los físicos más brillantes de la época como Robert Oppenheimer, John Stachel, Peter Hava y John A.Wheeler. El doctor Plebański asiste con regularidad a la cátedra que imparte el Premio Nóbel P.A.M. Dirac. En Princeton formó parte de la plantilla de trabajo y posteriormente se trasladó a la Universidad de California (UCLA) en los Ángeles, lugar en donde estuvo adscrito como investigador del Departamento de Física. En la Universidad de California estableció contacto con el reconocido físico mexicano Alfredo Baños, quien lo recomendó con varios investigadores en México, entre ellos el doctor Arturo Rosenbluth. En 1962 los doctores Rosenbluth y José Adem le extendieron una invitación para formar parte del grupo fundador del Cinvestav y para incorporarse al Departamento de Física del centro.

En 1967, Jerzy Plebański se vio forzado a regresar a su país de origen porque su gobierno le negó el permiso para permanecer más tiempo en México. A lo largo de los cinco años que duró su primera estancia en el Cinvestav, el físico logró impulsar temas de investigación novedosos y de frontera, lo que permitió que dicho centro junto con la Universidad de Oxford, en Gran Bretaña y la Universidad de Pittsburg, en Estados Unidos, se convirtieran en los polos de investigación más importantes en el mundo en el campo (soluciones exactas) de la Teoría General de la Relatividad a nivel mundial. La partida de Plebański representó un grave riesgo para la existencia del entonces incipiente Departamento de Física del Cinvestav, la situación fue tan crítica que Arturo Rosenbluth planteó la posibilidad de cerrarlo en 1968.

Durante el período que comprendió de 1969 a 1973 el doctor Plebański tuvo que combinar sus actividades académicas y de investigación con sus responsabilidades administrativas en Polonia. En 1973, como resultado de intensas negociaciones gubernamentales mexicanas, el físico polaco fue nuevamente invitado al Cinvestav. A partir de esa fecha el científico residió permanentemente en México. A su regreso a nuestro país, la salud de Jerzy Plebański se deterioró al grado de culminar en un infarto al miocardio. De esa terrible experiencia el físico salió avante y tuvo la entereza física y mental para desarrollar varios trabajos de gran trascendencia mundial como sus aportaciones a las ecuaciones de Einstein-Maxwell conocidos como solución de Plebański-Demianski, la creación de la primera y segunda ecuaciones “Hyper-cel-

bables.” Este periodo de alta productividad se extendría hasta 1986. Un año más tarde durante una estancia sabática en Albuquerque, Jerzy Plebański sufre un ataque de embolia. Pese a las dificultades de salud, el físico continuó activo y como responsable del Departamento de Física del Cinvestav. El doctor Plebański después de una prolongada enfermedad, murió a los 77 años en junio de 2005 en la Ciudad de México.
Otro caso de célula cancerígena renegada, que se niega a morir.

¡Acompáñenos a la puerta por favor, abuelo!
El Planetario se moderniza
Nuevamente a la Vanguardia Internacional

Con el apoyo de la Fundación Alfredo Harp Helú, próximamente el Planetario "Luis Enrique Erro" será remodelado con tecnología de punta (imagen digital y mejor acústica), para brindar atención de excelencia a la comunidad politécnica y a los miles de niños, jóvenes y sus familias que lo visitan permanentemente.

¡Espéralo!